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Abstract—This paper is concernedwith a uplink scheme formul-
ticell large antenna systems. We study a channel estimation tech-
nique where partially decoded data is used to estimate the channel.
We show that there are two types of interference components in
this scheme that do not vanish even when the number of antennas
grows to infinity. The first type, referred to as cross-contamina-
tion, is due to the correlation among the data signals from different
users. The second type, referred to as self-contamination, is due to
the dependency between the channel estimate and the estimation
error. Cross contamination is in principle similar to pilot contam-
ination in a conventional pilot-based channel estimation scheme,
while self-contamination is unique for the data-aided scheme. For
efficient use of the channel, the data part in a signaling frame is
typically much longer than the pilot part for a practical system.
Consequently, compared with pilot signals, data signals naturally
have lower cross correlation. This fact reduces the cross-contami-
nation effect in the data-aided scheme. Furthermore, self-contami-
nation can be effectively suppressed by iterative processing. These
results are confirmed by both analyses and simulations.

Index Terms—Data-aided channel estimation, iterative channel
estimation and signal detection, large antenna system, massive
MIMO system, pilot contamination.

I. INTRODUCTION

A SSUME that all other system parameters, such as the
number of users, the average transmission power per user

and rate per user, are fixed in a cellular system. Then, provided
that perfect channel state information (CSI) at the base station
(BS) is available, cross user interference can be completely
suppressed when , where is the number of antennas
at the BS. This fact motivates the research activities on large
(or massive) antenna systems [1]–[12].
Channel estimation is a challenging problem for a large an-

tenna system [1]. It is shown in [1] that, if CSIR is to be esti-
mated using non-orthogonal pilot signals, the effect of interfer-
ence does not vanish even when . This phenomenon is
referred to as “pilot contamination” [1]–[11]. The name comes
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from the fact that the underlying cause is the cross correlation
among the pilot signals of different users. Pilot contamination
may result in serious performance deterioration in a large an-
tenna system.
The treatments for pilot contamination have been extensively

studied. It is shown in [2] that pilot contamination can be re-
duced by asynchronous transmissions among neighboring cells
in a time duplex division (TDD) system. The scheme in [2] may
result in strong interference when two closely located mobile
terminals in neighboring cells are transmitting and receiving at
the same time [13]. Pilot contamination can also be mitigated
by techniques based on coordinated channel estimation [3] or
by multi-cell joint processing [4]. These techniques involve co-
operation and information exchange among multiple users in
neighboring cells. Moreover, the technique of [3] relies on spe-
cific conditions on channel covariance matrix and the claim of
[4] is only valid for the asymptotic case of infinite antennas. The
singular value decomposition (SVD)-based blind channel esti-
mation scheme proposed in [5], [6] is shown to be effective in
mitigating pilot contamination. The disadvantage of this scheme
is that SVD is a costly operation for a large antenna system.
In this paper, we study a scheme in which partially decoded

data are used to aid channel estimation [14], [15]. We derived
an analytical approach that can predict the performance of the
data-aided channel estimation scheme with reasonable accu-
racy. (Strictly speaking, the approach is semi-analytical if the
decoder function is obtained via simulation.) Our focus is on
the distortion at the receiver output in this scheme. We show
that there are residual interference terms that remain bounded
away from zero when . These residual interference
terms, broadly referred to as “contamination”, can be divided
into two types. The first type, referred to as cross-contamina-
tion, is due to the correlation among the data signals from dif-
ferent users. This is in principle similar to the correlation among
the pilots (or data) in a conventional scheme [1], [9, Remark 5].
The second type, referred to as self-contamination, results from
the dependency between channel estimate and estimation error.
(Recall that these two are independent in a classical minimum
mean-square-error (MMSE) estimation for a linear Gaussian
model.)
With analysis and simulation, we show that the two types

of contamination may cause considerable error if not treated
properly.We also show that cross-contamination can be reduced
by using a long data frame (as long data sequences naturally
have low cross correlation), and that self-contamination can be
alleviated by iterative processing.
Compared with other alternatives [2]–[6], the scheme studied

in this paper is noncooperative and does not rely on specific
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channel models. Therefore it is simpler and more flexible in
practice.
This paper is organized as follows. Section II introduces the

data-aided channel estimation scheme. The data detection per-
formance is then studied in Section III. Simulation results of
an iterative channel estimation and signal detection system are
given in Section IV and conclusions are drawn in Section V.

Notations

Boldface symbols denote matrices or vectors. denotes a ma-
trix of all-zero entries. denotes the -by- identity matrix.

represents the expectation operation. represents
circular symmetric complex Gaussian distribution with mean
and covariance . We use , and to denote complex
conjugate, transpose and conjugate transpose of a matrix, re-
spectively. represents the 2-norm of a vector. denotes the
Kronecker product. represents convergence in probability.

II. DATA-AIDED CHANNEL ESTIMATION

In this section, we study a data-aided channel estimation
scheme based on certain available a priori data information.
This information could be obtained from the output of a
soft-input soft-output channel decoder. For simplicity, we
assume that only the a priori data information is utilized in
channel estimation in this section. The impact of pilots are
briefly discussed in Section II-E.

A. System Model

Consider an -cell system. We adopt the following settings.
Each cell contains only one user. (We will briefly discuss
multi-user situations in Section IV-F.) Each base station (BS) is
equipped with antennas while each mobile unit is equipped
with only one antenna. We will focus on the uplink transmission
of cell 1. Our task is to estimate the channel during a frame of
consecutive symbols in time. A frame of received signals

over different antennas at the BS of cell 1 are denoted as

(1)

where is the equivalent channel gain from the user in
cell to the th antenna of BS 1, the
th symbol transmitted by the user in cell , the
additive white Gaussian noise sample with mean zero and
variance . The equivalent channel is represented as

, where includes the large scale fading
factor and the transmit power, and is a
Rayleigh fading factor. We assume that are known
at the receiver. We will focus on a quasi-static channel,
in which the channel remains constant in a frame and
change independently from frame to frame. Denote

, and
, we can now rewrite

(1) as

(2)

B. A Priori Data Information

Let be the side information (or a priori infor-
mation) of . Later in Section IV we will see that

can be generated using decoding feedbacks. Denote

(3)

Here, is the conditional mean of , i.e., the MMSE
estimator of based on [16]. Note that the side infor-
mation usually contains random errors and is thus random.
From (3), depends on and therefore is also a random
variable. For notational convenience, we also define an estima-
tion error:

(4)

We make the following assumptions:
1) is given in the form

(5)

where and is inde-
pendent of ; and

2) both and contain independent iden-
tically distributed (i.i.d.) samples.

Under the linear Gaussian model in Assumption 1), the
MMSE estimation and the estimation error are
mutually independent zero mean Gaussian random variables,
following the well-knownMMSE property [16]. Let be the
variance of . As average power of is normalized to
1, the variance of is . In particular, the a priori
information is perfect when , and very unreliable when

.
Under Assumption 2), both and

contain i.i.d. samples.
Assumptions 1) and 2) are introduced for simplicity of per-

formance analysis in Section III. Similar Gaussian assumptions
have been widely used in the literature on iterative detection
[17], [18]. Assumptions 1) and 2) can be justified if superposi-
tion coded modulation (SCM) [19], [20] is involved. However,
as will be shown in the numerical results in Section III-G (see
Fig. 4), the results derived based on Assumptions 1) and 2) are
reasonably accurate for other modulation methods such as Gray
signaling.

C. Channel Estimation

We first combine the time samples
as follows,

(6)

Substituting (2) into (6), we have

(7)
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For notational brevity, denote ,
and .

We can then rewrite (7) as

(8)

In the above, is known at the receiver and
is treated as uncorrelated noise. The linear MMSE (LMMSE)
estimator [16] of based on (8) is given by

(9a)

where [16]

(9b)

The above procedure is optimal under the linear MMSE prin-
ciple, as explained in Appendix A.
Note that and in (8) are not mutually independent, and

also is not Gaussian (as and are not
Gaussian). The channel estimate in (9a) and the estimation
error are also not independent, as opposed to the case
of LMMSE estimation for a linear Gaussian model. This fact
results in the so-called self-contamination, as will be discussed
in Section III-D.

D. Impact of Data Length on Estimation Quality

The estimation quality in (9) can be measured by the fol-
lowing signal-to-interference-plus-noise ratio (SINR) contained
in (or ),

(10)

From the discussions in Section II-B, is also a random vector.
The elements of are i.i.d. with mean zero and variance

. Taking average of over the distribution of , we
have

(11)

Fig. 1. Transmission frame structure of a communication system involving
channel estimation.

From (11), we can see that grows linearly with . This
is expected, since is obtained using independent observa-
tions in (6).
From (11), we can also see that depends on , i.e.,

the accuracy of the a priori data information. In Section IV, we
will see that can be reduced gradually using an iterative
process.

E. Discussions

Consider the frame structure in Fig. 1. A transmission frame
is divided into two phases: pilot phase and data phase. The total
number of symbols in a frame, including pilots and data, is lim-
ited by the channel coherence time in practice. For example,
one millisecond coherence interval corresponds to roughly 200
symbols in a typical LTE (Long Term Evolution) communica-
tion scenario [1], [11].
Conventionally, channel is estimated only based on the

pilots. In principle, we can improve the estimation quality by
increasing . However, since is limited by the channel
coherence time, increasing will decrease and thus reduce
the effective data rate.
For the data-aided scheme, the data frame length is only

limited by the channel coherence time and typically .
Therefore, the data-aided channel estimation scheme is more
attractive than the pilot-only one.
In practice, pilots can also be used for a data-aided scheme,

mainly for initialization purpose. The details will be discussed
in Section IV.

III. DATA DETECTION

In this section, we study the impact of channel estimation
error on the performance of data detection. For ease of analysis,
we assume that the receiver is based on a simple matched filter
(MF) detector.

A. Data Detection

The received signal in (2) can be expressed in a signal-plus-
distortion form,

(12a)

where

(12b)

To maintain low receiver complexity, a simple matched filter
(MF) detector is employed:

(13)
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In (13), is the desired signal,
represents the cross-interference from other cells. Since the de-

tection is based on , we treat as interfer-
ence although it contains a part of the desired signal . We

will refer to as self-interference.

B. Signal and Noise Power

The average signal and noise power in (13) are respectively
given by

(14)

(15)

We show in Appendices B-B and B-C (see (53d) and (59c)) that
when both and are large

(16)

(17)

From (16) and (17), we see that the ratio of signal power to noise
power is of order . This array gain comes from the fact
that signals are combined “coherently” while noise is combined
randomly.

C. Cross-Interference Power

Let us first discuss the following interference term inside the
summation in (13)

(18)

When both and are large, we show that

(19)

The detailed derivations of (19) are provided in Appendix B-D.
Comparing (16) and (19), we can see that the signal power

and cross-interference power are both in the order of .
If is fixed, cross-interference imposes a limit on the SINR
even when . This is similar to the pilot-contamination
effect in a pilot based channel estimation scheme [1], except
that the problem is caused by the correlation among data signals
instead of pilot signals. A similar effect has also been discussed
in [9, Remark 5]. In this paper, we will call this effect “cross-
contamination”.
Now note that the first term in (19) (which contains )

is attenuated by a factor of . In a practical system, can be
quite large (e.g., around 200 for a typical scenario in LTE [1],
[11]), resulting in effective suppression of cross-contamination.
This is a main advantage of the data-aided scheme. A potential
problem arises in (19) when , as then be-
come large. This corresponds to the situation that the a priori
information on is very unreliable (see the discussion below
Assumption 2) in Section II-B and so the performance of the
data-aided scheme is poor. Later in Section IV we will outline
an iterative process that can overcome this problem.

D. Self-Interference Power

Let us next consider the self-interference term

(20)

For a large and , we derive in Appendix B-E the following
approximations for ,

(21)

Similar to in (19), the power of is also of the order
. We refer to as “self-contamination”. As discussed

in Section II-C, and are not independent. This
dependency essentially causes the self-contamination effect.
This effect does not exist in a conventional pilot-based scheme
[7]–[9] where pilots are assumed known at the receiver.
We can observe from (21) that, similar to cross-contami-

nation, self-contamination is also attenuated by a factor of .
Furthermore, from (21), self-contamination will vanish when

, i.e., when the a priori information on is perfect.
This is different from cross-contamination. The latter does not
vanish even when , as can be seen from (19).

E. Correlation of Signal and Self-Interference

If self-interference is uncorrelated with signal, it can be
treated as additive Gaussian noise, based on, e.g., the worst
case Gaussian noise argument [21]. However, since the channel
estimate and the estimation error are not independent (see the
discussions in Section II-C), signal and self-interference in (13)
are correlated. This correlation problem may complicate the
performance analysis of the data detector.
We quantify the correlation and define the following correla-

tion coefficient [22]

(22)

In Appendix B-F, we show that, when and are large,

(23)

For this reason, we will ignore this correlation problem.

F. Numerical Results

Consider a 7-cell cellular system with normalized cell radius.
The users are assumed to be uniformly randomly located. As-
sume a fourth-power path-loss attenuation law. Let us focus on
a link from a user in cell to the BS in cell . The path-loss of
this link is given by , where is a constant and
the distance of this link. For simplicity, log-normal shadowing
is not considered.
We adopt a power control policy [23] such that the receive

power of a user to its own BS is . The transmit power of
this user is then . This implies that is given
by
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Fig. 2. Average power of cross-contamination and self-contamination for
and different , .

(Recall that includes both path-loss and transmit power.)
With the above setting, the receive SNR is given by

.
Following the discussions in Sections III-C and III-D, and

for convenience, we define the “cross-contamination” and “self-
contamination” terms as follows (see the discussions related to
(19) and (21)):

(24a)

(24b)

In Fig. 2, the average of cross-contamination and self-con-
tamination over the distributions of against are plotted
for different values. The number of antennas is fixed to be

. From Fig. 2, we have the following observations:
• When is relatively large, both cross-contamination
and self-contamination are serious.

Fig. 3. The power ratio of contamination for and different .
. are generated in the same way as in Fig. 2.

• For a fixed , both cross-contamination and self-contami-
nation decrease as becomes smaller. When ,
cross-contamination converges to a constant while self-
contamination vanishes.

• Both cross-contamination and self-contamination reduce
as becomes larger.

To quantify the contamination effect in a data-aided scheme,
we define the following ratio:

(25)
The plots of against are given in Fig. 3 for different
values, where the curves are obtained based on (17), (19), (21)
and (24).We can see that the contamination effect becomes mar-
ginal when is sufficiently large and is small.

G. SINR Performance

From (13), the SINR contained in the output of the MF de-
tector, denoted as , is defined in (27), at the bottom of
the page. Furthermore, using (16), (17), (19) and (21), we have

(27)

(28)

(29)
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the approximate SINR expression when and
are large in (28)-(29) at the bottom of the previous page. The
approximate SINR is more insightful in characterizing the per-
formance of the data-aided channel estimation scheme. From
(29), we have the following observations:
• The contamination terms are attenuated by a factor of ,
as discussed in Sections III-C and III-D. The conventional
interference terms, including inter-cell interference and
noise, are attenuated by a factor of .

• When is fixed and , is bounded. The
limiting value of is

(26)

In this scenario, contamination is dominant and conven-
tional interference terms disappear. Clearly, is
proportional to .

• When both and go to infinity, can be un-
bounded.

In Fig. 4, and are plotted for various
values of and . The curve with an “approximation” legend
is obtained from averaging (28) over . For the two curves
with a “simulation” legend, we first generate and , then
estimate the channel using , and finally measure ac-
cording to (27) using Monte Carlo simulations. The difference
between the two simulated curves is the generation of and
. For the solid curve, and are generated based on

the Gaussian assumptions detailed in Sections II-A and II-B.
For the dashed curve, are generated from Gray-mapped
16QAM signal constellations. is generated following a stan-
dard approach in EXIT [17] analysis for bit-interleaved coded
modulation (BICM) systems: we first produce the a priori
log-likelihood ratios (LLRs) related to and then estimate
(and also ) based on the LLRs. (For details of estimating
and , refer to [19].) In this approach, the data variances

are different for different symbols. In the channel estimator,
we simply approximate the variances by the sample average,
which is a common practice in the literature [24].
From Fig. 4, we can see that the two simulated curves are

almost indistinguishable. This validates the usefulness of the
Gaussian assumptions made in Sections II-A and II-B. More-
over, (28) (obtained based on the Gaussian assump-
tions) is a good approximation of , except when
. The inaccuracy is due to the approximation

in deriving (16), (17), (19) and (21)
in Appendix B. This approximation is loose when and
is relatively small.
We can observe from Fig. 4 that SINR grows as and

increase. Also, is a function of . In the next sec-
tion, a practical iterative processing will be introduced where

can be gradually reduced.

IV. ITERATIVE CHANNEL ESTIMATION AND SIGNAL DETECTION

In Sections II and III, we studied channel estimation and data
detection separately. In this section, we discuss these two func-
tions in an iterative joint channel estimation and data detection
process [14], [15].

Fig. 4. Average SINR of the data aided channel estimation scheme for different
and . . are generated in the same way as in Fig. 2.

Fig. 5. Transceiver structure for user 1. (a) transmitter. (b) receiver.

A. Transmitter Structure

The transmitter structure for the user in cell 1 is illustrated
in Fig. 5(a). We assume that one transmitted codeword spans
several coherence blocks. These coherence blocks may be
transmitted consecutively in time, or concurrently over dif-
ferent OFDM sub-carriers. For simplicity, we will assume that
the channel conditions for different blocks are independent.
In each coherence block, the first symbols are data symbols

and the other symbols are pilots. At the transmitter side, the
input binary information sequence is first processed by the
encoder (which includes FEC coding, random interleaving and
mapping) to get the data symbol , which are then multiplexed
with the random pilot symbols and transmitted through the
antennas. The received signals corresponding to data and pilot
transmissions are represented by , and ,

respectively. We set for our
simulations.

B. Iterative Channel Estimation and Signal Detection

The receiver structure is shown in Fig. 5(b), where itera-
tive channel estimation and signal detection is adopted. The
channel estimator and the signal detector have been discussed in
Sections II and III respectively. The decoder module takes the
output of the MF data detector as input and generates and

as outputs. The decoder module can be further divided into
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three parts: de-mapper, binary decoder, and mapper [19]. These
operations are standard and will not be discussed here. For more
details, refer to [19].
Pilot based channel estimation is performed in the first iter-

ation. In subsequent iterations, data-aided channel estimation
detailed in Section II will be employed with the help of the de-
coder feedback. The processions of the channel estimator, data
detector and decoder are executed iteratively until convergence.

C. Some Details

In Section II, we assumed that only data is used for channel
estimation. In practice, data and pilot can be combined to esti-
mate the channel. The related discussions can be found in [14],
[31].
There is another subtle point. From (6) and (9), the channel

estimator is expressed as

(30)

It is well known that extrinsicmessage should be used in a turbo-
type iterative receiver [25]. Tomeet the “extrinsic” requirement,
the channel estimate used to detect the th data symbol is mod-
ified as follows:

(31)
where and are excluded in the summations. We will

call in (31) extrinsic channel estimation. In simulation,
we observed that the performance difference between (30) and
(31) is marginal.

D. Complexity Analysis

Denote the complexities (per data symbols) of the channel
estimator, signal detector and decoder as , and
respectively. For the conventional pilot based scheme, only one
channel estimation is required for data symbols and each an-
tenna can be estimated independently, therefore is .
The complexity of the MF combining is per data symbol,
so we have . The decoding complexity
depends on the FEC code used (but is independent of ).
We now consider the complexity of the data-aided scheme

per iteration. The complexities of the signal detector and the
decoder are the same as those of the pilot based one. For
the channel estimator, since combining operations are
required to estimate each channel coefficient (see (6)), we have

, which is of the same order as .
From the above analysis, the complexity of the data-aided

scheme per iteration is roughly the same as the pilot based one.
The extra complexity is introduced by iteration. However, if
the pilot based scheme already involves iterative processing,
e.g., in BICM with iterative decoding (BICM-ID) [26] or turbo
equalization [24] systems, the extra complexity of data-aided
channel estimation is not a problem.

E. Evolution Analysis

The EXIT chart [17] technique is a useful tool for the anal-
ysis of an iterative receiver involving two constituent modules,
in which each module is characterized by a transfer function
and the overall performance is determined by the fixed point.
To apply this technique, we divide the receiver in Fig. 5(b) into
two modules: the decoder module and the CE-DET module,
with the latter consisting of the channel estimator and the data
detector. Instead of mutual information, we will characterize
the two modules using their SINR versus variance relationships
[27]. This is because our discussions in Section III readily pro-
vide such relationship for CE-DET. The followings are some
details.
We characterize the decoder module by the transfer function

, which can be generated using standard
Monte Carlo simulations [27] and will not be discussed here.
We characterize the CE-DET module using a transfer function

. Here, is defined in (27). We can ob-
tained using two approaches. The first approach is simply
to adopt the approximation in (28), which is fast but less accu-
rate. We will denote the resultant function as . The second
approach is through numerical simulation. We denote the resul-
tant function as . The generation of is similar to that
in Fig. 4, except now both pilots and data are used in the channel
estimator, as mentioned in Section IV-C. When , no a
priori data information is available and pilot only channel esti-
mation is adopted.
Note that is formulated under the assumption that there

is no pilot used (see (28)). This assumption results in certain
discrepancy between and . In particular, is zero
( in dB) while takes a non-zero value provided by
pilots.
An example of the two functions are given in Fig. 6, to-

gether with a function for a rate-1/2 convolution code with
Gray-mapped 256-QAM modulation. We can see from Fig. 6
that and are reasonably close except when .
Using the principles developed in [17], [27], the performance
of the underlying system can be predicted from the transfer
functions.

F. Simulation Results

The BER performances of the above iterative scheme, the
conventional pilot based one and the SVD blind estimation
scheme [6] are demonstrated in Fig. 7. Define to be the power
of pilot symbol to the power of data symbol.
From Fig. 7, we can see that the BER performances for both

and are very poor for the conventional pilot-
only scheme. As the problem is caused by the correlation among
pilots, increasing pilot power alone (even to an extremely large
value of ) cannot solve the problem.
On the other hand, the data-aided channel estimation tech-

nique can improve the BER performance drastically. After only
4 iterations, the performance is reasonably close to the bench-
mark scheme with perfect CSI. Clearly, the iterative scheme
is very effective in treating contamination. The predicted BER
performance using the evolution analysis in Section IV-E is also
included.We see that it is a good approximation of the simulated
one.
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Fig. 6. An example of evolution trajectory. , , For simplicity,
we set and for . , . A code word spans
4096 symbols. The rate-1/2 convolutional code with Gray-mapped
256QAM is employed. Channel .

Fig. 7. BER performances of the pilot based channel estimation scheme, the
data-aided scheme and the SVD blind scheme. and .

. , for . . A codeword spans 64 co-
herence blocks. The rate-1/2 convolutional code is employed with
Gray-mapped 256-QAMmodulation. MAP de-mapping is used. SNR is defined
as the ratio of data symbol power to noise power.

It can also be observed from Fig. 7 that the performance of the
blind SVD scheme is much better than that of the conventional
pilot only scheme, but still worse that data-aided one in the high
SNR region.
In the system model discussed in Section II-A, we assumed

that each cell contains only one user. The discussions on data-
aided channel estimation can also be extended to a system with
multiple users in a cell if the interferences from the inter-cell and
intra-cell users are simply treated in the sameway. In Figs. 8 and
9, we provide simulation results for such a multi-user system.
The number of users per cell is assumed to be . In this
system, orthogonal pilots are adopted for the intra-cell users and
the same orthogonal pilots are reused for different cells [1]. We

Fig. 8. BER performances in a multiple-user system. The number of users is
. , and for . 64-QAM modulation is employed.

Other parameters are the same as Fig. 7.

Fig. 9. for . Other parameters are the same as Fig. 8.

consider two values of : and . We observe
from Figs. 8 and 9 that the data-aided scheme performs the best
among the three schemes and it is more robust against strong
inter-cell interference.
We now briefly discuss the complexities of the three schemes

shown in Figs. 8 and 9. The per user complexities of the pilot
based scheme and the data-aided scheme have been analyzed in
Section IV-D. For the blind SVD scheme, the complexitymainly
comes from extracting the left singular vectors of a (large)
-by- matrix. For this purpose, the straightforward approach

is to perform full SVD and truncate the interested singular vec-
tors, which has complexity . As pointed
out in [6], more efficient algorithms exist, e.g., the implicitly
restarted Lanczos/Arnoldi algorithm in [28].
In Fig. 10, we demonstrate the BER performances of the

pilot-based, and the data-aided schemes as the number of an-
tennas varies. The channel SNR is fixed to be . Other
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parameters are the same as Fig. 8. We can see that for the rel-
atively high inter-cell interference scenarios of and

, the pilot-only scheme suffer from high error floor even
when , while the data-aided scheme performs signifi-
cantly better.

V. CONCLUSION

We analyzed the performance of the data-aided channel esti-
mation scheme in a multi-cell large antenna system. We showed
that there are two types of contamination in this scheme: cross-
contamination and self-contamination. Both analysis and simu-
lation show that the data-aided scheme can effectively suppress
the contamination effect and achieve improved performance in
large antenna systems.
The analysis procedure developed in this paper also provides

useful guidelines for system design. For example, from Fig. 6,
the variance at the fixed point can be reduced if the transfer
function of the decoder can be carefully shaped. It implies that
the FEC code should be designed by taking into account the
contamination effect. This is an interesting direction for future
research.
Possible future work also includes extensions to multi-path

channels. For this purpose, combining the data-aided channel
estimation scheme and the time frequency training OFDM
(TFT-OFDM) scheme proposed in [12] is an interesting topic.

APPENDIX A
DERIVATIONS OF THE LMMSE CHANNEL ESTIMATOR

We now rigorously prove that the estimator in (9) is
the optimal LMMSE estimator. For convenience, denote

, .
We can rewrite (2) as

(32a)

(32b)

where denotes the Kronecker product and

(32c)

The LMMSE estimate [16] of based on (32) is given by

(33)

where the expectation is conditioned on . In (33), and
are uncorrelated (note that and are mutually indepen-
dent). Therefore

(34a)

(34b)

(34c)

(34d)

where

(34e)

Steps (34b) and (34d) follow some basic properties of the Kro-
necker product [29, pp. 243]. Substituting (34) into (33), we get

(35a)

(35b)

(35c)

where

(35d)

In the above, (35a) is due to the following two properties of Kro-
necker product [29, pp. 244]: (1) ,
(2) for any invertible matrices and
; (35b) follows from the matrix inversion lemma, and (35c)

follows directly form the definition of the Kronecker product
and that of .
It can be verified that (35) is equivalent to the estimator (9)

in Section II-C.

APPENDIX B
DERIVATIONS OF AVERAGE SIGNAL, NOISE AND

INTERFERENCE POWER

For all derivations in this appendix, we will start from the
conditional expectations over fixed , and ,
and gradually remove these conditions.1

A. Linear Gaussian Model Related to

Before the detailed derivations, we will first discuss a linear
Gaussian model related to , which is useful for following
derivations. In this subsection, we assume that ,

and are fixed. (Note that when and are fixed,
is also fixed.)

For notational brevity, we define

(36)

Combining (8) and (9a), the channel estimate can be
rewritten as

(37a)

where

(37b)

and is defined in (9b). Since we assumed , and
are fixed, are thus fixed and is Gaussian. Under this

1To keep notational brevity, we will always use for conditional expecta-
tion without explicitly indicating the involved conditions, which should be clear
from the context.

Authorized licensed use limited to: Harvard Library. Downloaded on April 16,2020 at 00:52:00 UTC from IEEE Xplore.  Restrictions apply. 



3120 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 12, JUNE 15, 2014

Fig. 10. BER performances of the pilot based scheme, the data-aided scheme
for different and . , for . . Other
parameters are the same as Fig. 8.

assumption, (37) becomes a standard linear Gaussian model.We
rewrite as

(38)

where the linear combining coefficient is given by [16],

(39)

In the above

(40)

By the property of MMSE estimation of a linear Gaussian
model, and are statistically independent
[16]. It can also be shown that is Gaussian with zero mean
and variance

(41)

B. Signal

The signal power in (13) is given by

(42)

We now evaluate the expectation in (42). We will start from the
conditional expectation over fixed , and , and
gradually remove these conditions.
When , and are fixed, is Gaussian with

zero mean and variance given in (40). Therefore,
, where denotes chi-square distribution

with degrees of freedom, and so

(43)

Next, we assume that only is fixed. We will derive the
expectation of (43) over the distribution of and

. To this end, it suffices to derive condition on a fixed
. Recall the Gaussian assumptions on and

in Sections II-A and II-B. Under these Gaussian assumptions,
defined in (36) are also Gaussian, i.e.,

(44a)

(44b)

Taking average over and and using the prop-
erties of Gaussian distribution, we have [22]

(45)

Applying (45) to (41) and after some straightforward manipula-
tions, the expectation of conditioned on is shown to be

(46)

where is given by (see (9b))

(47)

Finally, we will derive the expectation of (46) over . The
exact result is very complicated for finite . Instead, we resort
to approximations for large .
Our approximation is based on the following theorem [30,

Theorem 3.9].
Theorem 1: Suppose are i.i.d. observa-

tions with a finite fourth moment. The mean and variance of
are given by and . Let be a scalar func-

tion with four uniformly bounded derivatives. Denote by the
sample average, i.e., . Then

(48)

where represents the second order derivative of .
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We now return to our problem. From assumptions 1) and 2)
in Section II-B, are i.i.d. Gaussian random
variables with zero mean and variance . Therefore,

are i.i.d. samples and is the
sample average. Also, the mean and variance of are re-
spectively given by

(49a)

(49b)

Note that (46) is a function of , denoted by
. Our aim is to approximate when

is large, where the expectation is with respect to . We
verified that the four uniformly bounded derivatives condition
of Theorem 1 is satisfied here. Applying Theorem 1, we have

(50)

where and are given in (49). is obtained by substi-
tuting into (46). can
be obtained by first deriving the second order derivative
and then substituting in . Applying Taylor series expansion to

and , we finally have

(51a)

(51b)

The detail of (51) are omitted here. Combining (50) and (51),
we can write

(52)

We now return to the signal power in (43). From (52) and
(43), we have

(53a)

(53b)

(53c)

(53d)

where we assumed that is also large in (53c).

C. Noise

We next consider the noise power, given by (see (13))

(54)

Similar to (43), when , and are fixed, we
have and

(55)

where was given in (40):

(56)

We now assume that only is fixed and take average of
with respect to and . Note that the averages of

are given in (45). Combining this with (56), we can
verify that

(57)

Applying Theorem 1 and using similar steps as (49)–(52) in
Subsection B, we further take the average of (57) with respect
to and obtain

(58)

Combining (55) and (58) we have

(59a)

(59b)

(59c)

when both and are large.

D. Cross-Interference

We now consider the average power of cross-interference in
(13)

(60)

Again, we first assume that , and are fixed.
Under this assumption, we have shown in (38) that can be
decomposed as

(61)

Substituting (61) into (60), we have

(62a)

(62b)

(62c)

(62d)

where , and are given in (39)–(40). The expectations

in (62) are with respect to and , conditioned on ,
and . The equality in (62c) is due to the independency
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between and . In (62d) we have used (see also (43) and
(55))

(63a)

(63b)

We next average and in (62d) over the

distribution and . Using (45),

and are given in (65) at the bottom of the page.
Next, we take the average of (65) with respect to . Similar to
(49)–(52) in Subsection B, for large , we have

(64a)

(64b)

Substituting (64) into (62d), the cross interference power
can be approximated as follows

(68a)

(68b)

(68c)

where we assumed that is large in (68c). Since when
is large, is in a lower order (in terms of ) than

and in a lower order than
, we thus omit the two error terms in (68c) and obtain

the following approximation

(69)

E. Self-Interference

Form (13), the average self-interference power is given by

(70)

The derivations of (70) will be similar to those of ,
in Subsection D.
Firstly, we assume that , and are fixed.

We decompose into two mutually independent parts as

(71)

Substituting (71) into (70) and similar to (62), we can write

(72a)

(72b)

(72c)

Next, we average and in (72c) over
and , conditioned on . Using (45), we obtain

and in (66), as shown at the
top of the next page. When is large, following (49)–(52) in
Subsection B, we finally have

(73a)

(73b)

We now combine (73b) and (72c) and approximate self-inter-
ference in the large and regime as follows

(74a)

(74b)

(74c)

(74d)

(65a)

(65b)
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(66a)

(66b)

(67)

F. Correlation of Signal and Self-Interference

The correlation coefficient between signal and self-interfer-
ence is defined in (22) as

(75)

The average signal power and self-interference power
in the denominator of (75) has been derived in (53) and

(74), respectively. We now consider in the numerator
of (75). Following the same procedure adopted in deriving self-
interference power, we have

(76a)

(76b)

Again, using the formulas in (45), we obtain in
(67) at the top of the page. Applying similar steps as (49)–(52)
to (67), we obtain the following result when is large,

(77)

From (76) and (77), when both and are large,

(78)

Furthermore, from (53c) and (74b) we have

(79)

Now substituting (78)–(79) into the definition of in (75), we
have the following approximation when and are both large,

(80)

From (80), the correlation between the signal and self-interfer-
ence is negligible when both and are large.
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