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On the Performance of Turbo Signal Recovery with
Partial DFT Sensing Matrices
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Abstract—This letter is on the performance of the turbo signal
recovery (TSR) algorithm for partial discrete Fourier transform
(DFT) matrices based compressed sensing. Based on state evo-
lution analysis, we prove that TSR with a partial DFT sensing
matrix outperforms the well-known approximate message passing
(AMP) algorithm with an independent identically distributed
(IID) sensing matrix.
Index Terms—AMP, partial DFT, signal recovery, state evolu-

tion, turbo compressed sensing.

I. INTRODUCTION

T HE approximate message passing (AMP)1 algorithm
[1]–[9] is an efficient signal recovery method for com-

pressed sensing. Its convergence is asymptotically guaranteed
for sensing matrices with independent identically distributed
(IID) entries using the state evolution technique [1], [2]. The
fixed points of the state evolution for AMP include the optimal
minimum mean squared-error estimation (MMSE) solution
[11]–[13]. This indicates that AMP is asymptotically optimal
when the state evolution equation has a unique solution.
AMP can also be applied to problems involving non-IID

sensing matrices [14], [15]. However, the state evolution tech-
nique is not directly applicable in this case.
Alternative techniques have been developed for non-IID

sensing matrices [16]–[18]. It has been observed that these
techniques with partial discrete Fourier transform (DFT) ma-
trices [19]–[22] can outperform AMPwith IID sensing matrices
under proper normalization conditions. The comparisons in
[16]–[18] were based on simulations and no analytical results
have been reported so far.
This letter is on the performance analysis of turbo signal

recovery (TSR) with a partial DFT sensing matrix [18]. We
prove based on state evolution that TSR with a partial DFT
matrix (TSR-DFT) outperforms AMP with an IID Gaussian
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1Throughout this letter, AMP refers to AMP-MMSE [10].

Fig. 1. Functional diagram of a standard turbo processor.

matrix (AMP-IID). Since the state evolution technique for AMP
does not apply to problems involving a partial DFT matrix
(AMP-DFT), we compare TSR-DFT and AMP-DFT through
simulations. Our numerical results suggest that TSR-DFT
converges faster than AMP-DFT.

II. PROBLEM DESCRIPTION

Consider the following linear system:

(1)

where is a sparse signal, the addi-
tive white Gaussian noise (AWGN) and (

) a partial DFT matrix consisting of randomly selected
rows of the normalized DFT matrix . The th entry of
is given by .
We assume that the entries of are IID. The th entry

follows the Bernoulli-Gaussian distribution [3]

(2)

By this definition, . Here determines the sparsity
of the system. The partial DFT matrix can be rewritten as

(3)

where consists of randomly selected rows of the identity
matrix. We define the following auxiliary vector:

(4)

Combining (1) and (4), we have

(5)

Our objective is to recover based on under the assumption
that is sparse with .

III. TURBO SIGNAL RECOVERY

A. Standard Turbo Processor
Fig. 1 shows a standard turbo-type signal processor [23] for

the problem under consideration. The related operations can be
grouped into two modules labeled as A and B. Module A is a
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Fig. 2. Functional diagram of the turbo signal recovery (TSR) algorithm [18].”ext” represents extrinsic message computation.

linear minimum mean-squared error (LMMSE) estimator [24]
of based on (1)without the sparsity information, while module
B estimates based on the sparsity information in (2). The two
modules work iteratively.
Since LMMSE estimation is standard, we will focus on

module B. The input of module B, denoted by (see Fig. 1),
is modeled as [18]

(6)

where is IID Gaussian and independent of . For each , the
sparsity combiner produces the a posteriorimean
based on the AWGN assumption in (6) and the sparsity con-
straint in (2). Let “ “ denote indices excluding . The extrinsic
mean is defined as . Since is assumed to be
an AWGN observation of , the extrinsic mean will not improve
during the iterative process based on Fig. 1. The problem here is
that the sparsity constraint is symbol-by-symbol and so
does not provide any information about . For details, see [18].

B. Turbo Signal Recovery
The TSR algorithm proposed in [18] is listed in Algorithm 1

and graphically illustrated in Fig. 2. The TSR algorithm com-
putes the extrinsic message of (instead of ) for module B.
This avoids the above mentioned problem for the standard turbo
processor. Refer to [18] for more details.

Algorithm 1 Turbo Signal Recovery (TSR)

Initialization: , and .

for
1) Update

(7)

2) Compute the a posteriori mean/variance of

(8a)

(8b)

where denotes the th entry of .
3) Compute the a posteriori mean/variance of

(9a)

(9b)

4) Compute the extrinsic mean/variance of

(10a)

(10b)

5) Update

(11)

6) Compute the a posteriori mean/variance of each

(12a)

(12b)

7) Compute the a posteriori mean/variance of

(13a)

(13b)

8) Compute the extrinsic mean/variance of

(14a)

(14b)

end

IV. STATE EVOLUTION ANALYSIS

In the following, we analyze the state evolution of TSR-DFT
[18], based on which we prove that TSR-DFT outperforms
AMP-IID.

A. MMSE Properties for an AWGN System
Assume that has zero mean and unit variance. Consider the

following observation of corrupted by AWGN,

(15)

where is independent of and is the signal-
to-noise ratio (SNR). Following [25], define

(16)

and

(17)
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The following properties of are due to [25, Proposi-
tions 4 and 9]:

(18a)

(18b)

The above two properties are useful to our later discussions.

B. State Evolution of TSR-DFT
We use the a priori variances and to measure the

reliabilities of in (7) and in (10b), respectively. Our
basic assumption is that in (10b) is an AWGN observation
of :

(19)

where is independent of .
Define

(20)

It is shown in [18] that the state evolution equations of TSR are
given by

(21a)

(21b)

where the superscripts represent the iteration indices, with ini-
tialization .

C. Convergence of State Evolution for TSR-DFT
Proposition 1: and in (21) are non-increasing

functions.
Proof: It is straightforward to see that in (21a) is a non-

increasing function of . We now rewrite (21b) as
, where

(22)

So,

(23)

From Property 2 in (18b), we have

(24)

where and . From
(24), is a non-decreasing function and so
is a non-increasing function.
Based on the monotonicity of the state transfer functions

and , it can be proved that and are monotone,
i.e.,

(25)

In the first iteration, in (21a) so

(26)

Applying Property 1 in (18a) to (21b) yields

(27)

Combining (27) and (21a), we have

(28)

Finally, from (25) and (27)–(28), we get

(29a)

(29b)

From (29), the state sequences and are monotonic
and bounded, and so they converge. Combining (21a) and (21b),
the stationary value is the solution of the following equation
[18]:

(30)
where is an abbreviation for . Note that (30)
is consistent with the optimal MMSE performance obtained by
the replica method. See [13, Eqns. (17) and (37)].

D. Comparison of TSR-DFT and AMP-IID
Refer to the discussions in the Introduction. We now compare

TSR-DFT and AMP-IID based on their state evolution equa-
tions.
The state evolution of AMP-IID is given by [10, Eqn. (41)],

[19, Eqns. (18) and (20)]2.

(31a)

(31b)

with initiation .
For TSR-DFT, we rewrite (21) as

(32a)

(32b)

The following helps to see the equivalence of (21) and (32):

(33)

A factor of is used (33) to match (32a) with (31a),
which facilitates the proof of the proposition below.
Proposition 2: , for .

2Note that the variances of the entries of the IID Gaussian matrix are ,
instead of as assumed in [1]–[3]. This is for the convenience of comparison
with TSR-DFT.

Authorized licensed use limited to: Harvard Library. Downloaded on April 16,2020 at 00:50:49 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: ON THE PERFORMANCE OF TURBO SIGNAL RECOVERY 1583

Proof: We prove by induction on . The initial conditions
are and . So from (33),

(34)

Now suppose

(35)

It suffices to prove that

(36)

Combining (32a) and (32b), we have

(37a)

(37b)

From (25) and (33) we have

(38)

Replacing by in (37a), and using (38), we obtain the
following inequality

(39a)

(39b)

(39c)

After some manipulations of (39a), we get

(40a)

(40b)

From (40) and noting the fact that (from (25)
and (33)), we have

(41)
Now consider AMP-IID. Combining (31a) and (31b), we have

(42)

Fig. 3. MSE performances of TSR and AMP. . .
. The simulated MSEs are obtained by averaging over 500

realizations.

Note that is a monotonically decreasing func-
tion. Comparing (41) and (42) and based on the assump-
tion that , we readily obtain

, which proves (36).
The MSE performances of TSR-DFT and AMP-IID at

iteration are characterized by and
, respectively. Corollary 1 below shows that

TSR-DFT outperforms AMP-IID in terms of estimation MSE
in each iteration.
Corollary 1: .
Proof: By comparing (31a) and (32a), together with

Proposition 2, it is straightforward to see that
. Corollary 1 follows since is a monotoni-

cally decreasing function.

V. NUMERICAL EXAMPLES

Fig. 3 shows the numerical results for AMP-IID, AMP-DFT
and TSR-DFT. First, we see that the simulation and evolution
results for TSR-DFT and AMP-IID agree very well. Note that
only simulation results are provided for AMP-DFT since no ef-
ficient analysis technique is available.
From Fig. 3, we see that TSR-DFT outperforms AMP-IID in

terms of both convergence speed and convergent MSE, which
verifies Corollary 1. Also, the simulation results show that
TSR-DFT converges faster than AMP-DFT. From Fig. 3, it
seems that the differences in the convergent MSEs are minor
for TSR-DFT and AMP-DFT. However, if we decrease , a
more significant gain of TSR-DFT over AMP-DFT could be
observed, see [18, Fig. 3].
In simulations, we find that the performance advantage of

TSR over AMP shrinks as decreases. We will not show the
results here due to space limitation.

VI. CONCLUSIONS
In this letter, we proved based on state evolution that

TSR-DFT outperformed AMP-IID. In addition, our simulation
results suggest that TSR-DFT converges faster than AMP-DFT.
Possible future work includes extending the TSR algorithm to
the IID setting and compare it with AMP-IID.
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