
1

Towards Designing Optimal Sensing Matrices

for Generalized Linear Inverse Problems
Junjie Ma, Ji Xu, Arian Maleki

Abstract

We consider an inverse problem y = f(Ax), where x ∈ Rn is the signal of interest, A is the sensing matrix, f

is a nonlinear function and y ∈ Rm is the measurement vector. In many applications, we have some level of freedom

to design the sensing matrix A, and in such circumstances we could optimize A to achieve better reconstruction

performance. As a first step towards optimal design, it is important to understand the impact of the sensing matrix on

the difficulty of recovering x from y.

In this paper, we study the performance of one of the most successful recovery methods, i.e., the expectation

propagation (EP) algorithm. We define a notion of spikiness for the spectrum of A and show the importance of

this measure for the performance of EP. We show that whether a spikier spectrum can hurt or help the recovery

performance depends on f . Based on our framework, we are able to show that, in phase-retrieval problems, matrices

with spikier spectrums are better for EP, while in 1-bit compressed sensing problems, less spiky spectrums lead

to better performance. Our results unify and substantially generalize existing results that compare Gaussian and

orthogonal matrices, and provide a platform towards designing optimal sensing systems.

I. INTRODUCTION

A. Problem statement and contributions

Consider the problem of estimating a signal x ∈ Rn from the nonlinear measurements:

y = f
(
Ax
)
, (1)

where A ∈ Rm×n is a sensing matrix and f : R 7→ Y is a function accounting for possible nonlinear effect of

the measuring process. Here, the function f(·) is applied to Ax in a component-wise manner. The above model

arises in many applications of signal processing [1]–[3], communications [4]–[6], and machine learning [7], [8].

For instance, the phase retrieval problem, which is a special case of (1) with f(z) = |z|, has received significant
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interest in recent years [1], [9]–[18]. In this paper, we assume that the signal is generic and prior information such

as sparsity is not explored.

This work is motivated by the problem of optimizing the sensing matrix for the nonlinear inverse problem.

Towards this goal, here we seek to understand the impact of the sensing matrix, or more specifically the spectrum

of the sensing matrix, on the difficulty of recovering the signal x from its measurements y. In many applications,

one has certain level of freedom in designing the sensing matrix (e.g., transmitter design in communications or the

masks used in phase retrieval application) and hence understanding the impact of the sensing matrix on the recovery

algorithms is the first step toward the optimal design of such systems. Rather than studying the information theoretic

limits, where the computational complexity of the recovery algorithm is ignored, we would like to study the impact

of the spectrum of the sensing matrix on efficient algorithms that are used in applications. For this reason, we

consider one of the most successful recovery algorithms that has received substantial attention in the last few years,

i.e. expectation propagation (EP) [19], [20] (referred to as GLM-EP in this paper1), and study the impact of the

spectrum of the sensing matrix on the performance of this algorithm. The EP algorithm studied here is an instance

of the algorithm introduced in [21], [22] and is closely related to the orthogonal AMP (OAMP) [23] and vector

AMP (VAMP) [24] algorithms (in that all these algorithms use divergence-free denoising functions [23]).

Similar to the approximate message passing (AMP) algorithm [25], GLM-EP has two distinguishing features: (i)

Its asymptotic performance could be characterized exactly by a simple dynamical system (with very few states)

called the state evolution (SE). (ii) It is conjectured that AMP or GLM-EP achieve the optimal performance among

polynomial time algorithms [26], [27]. Based on the SE framework, we investigate the impact of the spectrum of

the sensing matrix A on the performance of GLM-EP. It turns out that the “spikiness” (or conversely “flatness”) of

the spectrum of the sensing matrix spectrum has a major impact on the performance of GLM-EP. To formalize

this statement, we first define a measure of “spikiness” of the spectrum based on Lorenz partial order [28]. We

show that whether the spikiness of the spectrum benefits or hurts GLM-EP depends on the choice of the nonlinear

mapping f (as well as the sampling ratio). For instance, spikier spectrums help the performance of phase retrieval

problem (where f(x) = |x|) but hurt the performance of 1-bit compressed sensing (where f(x) = sign(x)). We

will characterize the classes of functions on which spikiness hurts or helps GLM-EP based on the monotonicity

of a function (which is related to the scalar minimum mean square error) that will be defined in this paper. As a

byproduct of our studies, we will also show that when the spectrum is spiky enough, the number of measurements

required by GLM-EP to achieve perfect recovery approaches the information theoretical lower bound.

B. Related Work.

Message passing algorithms [3], [19]–[25], [29]–[42] have been used extensively for solving the estimation

problems similar to the one we have in (1). As a result of such studies, it is known that partial orthogonal matrix is

better than iid Gaussian matrix for noisy compressed sensing [37], and the spectral methods for phase retrieval

perform better with iid Gaussian sensing matrices than coded diffraction pattern matrices [43]–[46]. However,

1The name GLM-EP is chosen because the model (1) is an instance of generalized linear models (GLM).
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studying the impact of spectrum of the sensing matrix in the generality of our paper has not been done to the best

of our knowledge. Recently, [47] considered the phase retrieval problem and a sensing matrix which can be written

as the product of Gaussian and another matrix. They reached the conclusion that the weak recovery threshold with

this type of matrices can be made arbitrarily close to zero. As a special case of our results, we will also show that

if we make the spectrum of the sensing matrix spiky, GLM-EP can reach the information theoretic lower bounds in

the phase retrieval problem. [48] considered the phase retrieval problem with generative priors in the form of deep

neural networks with random weight matrices, and showed that it yields smaller statistical-to-algorithmic gap than

sparse priors.

Another venue of research that is also related to our work is the derivation of the information theoretic limits for

analog compression schemes. Analog compression framework was first introduced in [49], [50] for compressed

sensing. It was shown in [49], [50] that the minimum number of measurements required for successful signal

reconstruction in an information theoretic framework is related to the Rényi information dimension of the signal

distribution. [51] studied the phase retrieval problem using the analog compression framework and proved that

(real-valued) phase retrieval has the same fundamental limit as that of compressed sensing. In order to compare the

performance of GLM-EP on matrices with different spectral, we generalize the work of [49], [50] and [51] and

obtain information theoretic limit for our sensing model. Note that while we are using such information theoretic

tools, the problem we are studying in this paper is fundamentally different from the one studied in [49]–[51].

Here we are interested in the impact of the spectrum of the sensing matrix on the performance of GLM-EP, and

information theoretic limits are mainly derived for comparison purposes (and evaluating the optimality of GLM-EP).

C. Definitions

In this section, we mention some definitions that will be frequently used throughout this paper. We first start with

the Rényi information dimension of a random variable.

Definition 1 (Information dimension [49], [52]). Let X be a real-valued random variable, and 〈X〉M = bMXc/M

be a quantization operator.2 Suppose the following limit exists

d(X) = lim
M→∞

H (〈X〉M )

logM
,

where H(·) is the entropy of a discrete random variable. The limit d(X) is called the information dimension of X .

Further, if H(bXc) <∞, then 0 ≤ d(X) ≤ 1.

As will be discussed later, d(X) plays a critical role in the information theoretic lower bounds we derive for the

recovery algorithms. The next lemma shows how d(X) can be calculated for the simple distributions we observe in

our applications.

2The notation bzc denotes the largest integer that is smaller than z.
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Lemma 1 (Information dimension of mixed distribution [49], [52]). Let X be a random variable such that H(bXc)

is finite. Suppose the distribution of X can be represented as

PX = (1− ρ)Pd + ρPc,

where Pd is a discrete measure and Pc is an absolutely continuous measure with respect to Lebesgue, and 0 ≤ ρ ≤ 1.

Then,

d(X) = ρ.

The minimum mean squared error (MMSE) defined below is an important notion in our analysis of GLM-EP.

Definition 2 (MMSE for AWGN channel [53]). Let (Z,U) be a pair of random variables. The MMSE mmse(Z, snr)

and the conditional MMSE mmse(Z, snr|U) given U are defined as

mmse(Z, snr) = E
[(
Z − E[Z|

√
snrZ +N ]

)2]
,

mmse(Z, snr|U) = E
[(
Z − E[Z|

√
snrZ +N,U ]

)2]
,

(2)

where N ∼ N (0, 1) is independent of (Z,U), and the outer expectations are taken over all random variables

involved.

More properties of the MMSE function and the MMSE dimension are detailed in Appendix A.

II. INFORMATION-THEORETIC LIMIT FOR SIGNAL RECOVERY

As we discussed earlier, our main objective is to evaluate the impact of the spectrum of the sensing matrix on the

performance of GLM-EP. However, it is still useful to compare what GLM-EP achieves (for different spectral) with

the information theoretic lower bounds, which we derive in this section.

A. Assumptions

Before we proceed to the technical part of the paper, let us review the assumptions we make throughout this

paper.

(A.1) The elements of x are independently drawn from PX , which is an absolutely continuous distribution with

respect to the Lebesgue measure. Further, E[X2] = 1.

(A.2) Let the SVD of A ∈ Rm×n (m ≥ n) be A = UΣV T, where U ∈ Rm×m and V ∈ Rn×n are independent Haar

matrices, which are further independent of Σ. Let {σi}ni=1 be the diagonal entries of Σ and Λi
∆
= σ2

i . We assume

that the empirical distribution of {Λi}ni=1 converges almost surely to a deterministic limit PΛ with a compact

support bounded away from zero, as m,n→∞ with m/n→ δ ∈ (1,∞). Further, 1
n

∑n
i=1 Λ2

i
a.s.−→ E[Λ2] <∞,

where Λ ∼ PΛ. Without loss of generality, we assume E[Λ] = δ.

(A.3) f : R 7→ Y is a piecewise smooth function. Specifically, the domain R can be decomposed into K ∈ N+

non-overlapping intervals, and f is continuously differentiable and monotonic on each sub-interval. Furthermore,

we assume |f−1(y)| <∞ for all y and H(bf(Z)c) <∞ where Z ∼ N (0, 1).
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Note that Assumption (A.2) is a standard assumption in theoretical analysis of GLM-EP [24], [35], [39].

Furthermore, all the nonlinearities that we observe in applications satisfy Assumption (A.3). We consider generic

signal and do not impose any structural assumption (e.g., sparsity). Finally, the independence assumption we have

made in the prior of x is again standard in the literature of approximate message passing and expectation propagation

[3], [21], [29], [54], [55]. One may relax this assumption and consider correlated signals at the expense of making

more assumptions about the recovery algorithm.

B. Perfect reconstruction in a noiseless setting

In this section, we derive the information theoretic lower bound on the number of measurements required by a

Lipschitz recovery scheme to achieve vanishing error probability. Note that the computational complexity of the

recovery algorithm is not of any concern in these lower bounds. We will later compare our results for GLM-EP

with these information theoretic lower bounds.

Theorem 1 (Perfect reconstruction under Lipschitz decoding). Suppose Assumptions (A.1)-(A.3) hold. Suppose

that there exists a limiting eigenvalue distribution PΛ and a Lipschitz continuous decoder g : Ym 7→ Rn such that

P{x 6= g(f(Ax))} → 0 as m,n→∞ and m/n→ δ ∈ (1,∞), then necessarily we have

δ ≥ 1

d(Y )
(3)

where d(Y ) is the information dimension of Y := f(Z), Z ∼ N (0, 1). Here, the error probability is taken with

respect to both x and A.

The proof of this result can be found in Appendix B. The Lipschitz regularity condition on the decoder is natural

for robustness considerations. It is interesting future work to study whether the converse result still holds with the

Lipschitz condition removed or relaxed.

Intuitively speaking, d(Y ) ∈ [0, 1] may be interpreted as a measurement discount factor and the total number of

effective measurements is m · d(Y )3 .

Remark 1 (1-bit CS). For the 1-bit compressed sensing (CS) problem, we have f(z) = sign(z) and d(Y ) = 0. In

this case, the condition δ ≥ 1/d(Y ) = +∞ implies that perfect recovery is impossible in the regime m,n→∞

and m/n → δ ∈ (1,∞). Notice that our result does not contradict with existing 1-bit CS results [8], [56]. For

instance, [56] analyzes the number of random measurements required by a convex minimization algorithm to achieve

a non-zero target distortion ρ, and the bound blows up to infinity as ρ→ 0.

C. Stable reconstruction in the noisy setting

Theorem 1 focuses on signal reconstruction for model (1) without any noise. For practical considerations, it is

desirable to make sure that a small amount of measurement noise does not cause major performance degradation. In

3In the rest of this paper, we will use Y to denote the random variable f(Z), where Z ∼ N (0, 1).
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this paper, we consider the following noisy model4

y = f(Ax + w), (4)

where w ∼ N (0, σ2
wI) is independent of A and x. Define the noise sensitivity [50], [57] of the minimum mean

square error (MMSE) estimator by

M∗(X, f,Λ, δ)
∆
= sup

σw

lim sup
n→∞

1
nmmse(x|y,A)

σ2
w

, (5)

where mmse(x|y,A)
∆
= E

[
(x− E[x|y,A])

2 ] is the MMSE of estimating x from y. In the above definition, the

limit n → ∞ is understood as n → ∞ and m/n → δ. Theorem 2 below shows that to achieve bounded noise

sensitivity, one needs δ ≥ 1/d(Y ), the same necessary condition for achieving vanishing error probability in the

noiseless setting. Its proof can be found in Appendix C.

Theorem 2 (Noise sensitivity). Suppose Assumptions (A.1)-(A.3) hold. Additionally, assume x ∼ N (0, I). A

necessary condition for achieving bounded noise sensitivity, namely M∗(X, f,Λ, δ) <∞, is δ ≥ 1/d(Y ).

Note that the same fundamental limit 1/d(Y ) appears for both noiseless recovery (Theorem 1) and noise sensitivity

(Theorem 2) converse results. The situation is similar to the pioneering work [49] which established the information

theoretical limits for compressed sensing.

We would also like to mention that the asymptotic MMSE (and so the noise sensitivity) may be calculated using

the replica method [58]. However, since the correctness of the replica predictions has not been proved for the current

setting, we do not pursue it in this paper and leave it as possible future work.

D. Discussion of Theorems 1 and 2

Theorems 1 and 2 show that the quantity d(Y ) determines the fundamental limit for signal recovery from the

nonlinear model (1). Notice that Y := f(Z) is a mixed discrete-continuous distribution (by Assumption (A.3)),

where the discrete component in Y corresponds to “flat” sections of f ; see Figure 1 for illustration. According to

Lemma 1, d(Y ) is simply the weight in the continuous component of the distribution of Y , which is the probability

of Z ∼ N (0, 1) falling into the non-flat sections of f . For illustration, Figure 1 shows three representative examples

of f .

Type I: f is a piece-wise smooth function without flat sections; see the left panel of Figure 1 for illustration.

This type of functions includes the absolute value function f = |z|, which appears in phase retrieval problems. For

such functions, f(Z) has an absolutely continuous distribution when Z ∼ N (0, 1), and hence d(Y ) = 1 according

to Lemma 1.

Type II: f consists of purely flat sections. A special case is the quantization function. Clearly, Y has a discrete

distribution and d(Y ) = 0.

4Other types of noisy models are possible, e.g., y = f(Ax) +w. For such noisy models, we expect that the fundamental noise sensitivity

result in Theorem 2 still holds, but the noise sensitivity result of GLM-EP in Theorem 7 may require new analysis. Extending our results to

these models is beyond the aim of the current paper.
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Type III: f consists of both flat and non-flat sections, e.g., the function shown on the right panel of Figure 1.

Such scenarios happen, for instance, when sensors saturate in the phase retrieval application. In this case, Y has a

mixed discrete-continuous distribution and 0 < d(Y ) < 1.

y
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f(z)

<latexit sha1_base64="mJnKcsxqBZsLaCCAdErTxsn+dxg=">AAAB+3icbVA9SwNBEJ2LXzF+RS1tFoMQm3AXIloGbCwjmA9IjrC32UuW7O4du3tCPO4v2GpvJ7b+GFt/iXtJCk18MPB4b4aZeUHMmTau++UUNja3tneKu6W9/YPDo/LxSUdHiSK0TSIeqV6ANeVM0rZhhtNerCgWAafdYHqb+91HqjSL5IOZxdQXeCxZyAg2uRRWny6H5Ypbc+dA68Rbkgos0RqWvwejiCSCSkM41rrvubHxU6wMI5xmpUGiaYzJFI9p31KJBdV+Or81QxdWGaEwUrakQXP190SKhdYzEdhOgc1Er3q5+J/XT0x446dMxomhkiwWhQlHJkL542jEFCWGzyzBRDF7KyITrDAxNp7SnzWByGwo3moE66RTr3mN2tV9o9KsL+MpwhmcQxU8uIYm3EEL2kBgAs/wAq9O5rw5787HorXgLGdO4Q+czx+hl5Rx</latexit>

Fig. 1: Three types of f . Left: d(Y ) = 1. Center: d(Y ) = 0. Right: 0 < d(Y ) < 1.

III. GLM-EP ALGORITHM AND PERFORMANCE ANALYSIS

In this section, we introduce an expectation propagation (EP) [19], [20] type algorithm, referred to as GLM-EP,

for solving our nonlinear inverse problem and derive its state evolution (SE). We then study the impact of the

spectrum of the sensing matrix on the performance of this algorithm.

A. Summary of GLM-EP

The GLM-EP algorithm is summarized below. We use superscripts to represent iteration indices, and subscripts ‘l’

and ‘r’ to distinguish different variables.

Initialization: z−1
r = 0, v−1

r = 1. For t = 0, . . ., execute the following steps iteratively:

ztl =
1

1−
〈
η′z(z

t−1
r ,y, vt−1

r )
〉 · (ηz(zt−1

r ,y, vt−1
r )−

〈
η′z(z

t−1
r ,y, vt−1

r )
〉
· zt−1
r

)
, (6a)

vtl = vt−1
r ·

〈
η′z(z

t−1
r ,y, vt−1

r )
〉

1−
〈
η′z(z

t−1
r ,y, vt−1

r )
〉 , (6b)

Rt ∆
= A

(
vtlI + ATA

)−1
AT, (6c)

ztr =
1

1− 1
mTr(Rt)

·
(
Rt − 1

m
Tr(Rt) · I

)
· ztl , (6d)

vtr = vtl ·
1
mTr(Rt)

1− 1
mTr(Rt)

, (6e)

where ηz is defined by

ηz(zr, y, v)
∆
=

∫
f−1(y)

u · N (u; zr, v)du∫
f−1(y)

N (u; zr, v)du
, (6f)

and η′z denotes the derivative of ηz with respect to the first argument. Here,N (x;m, v) := 1√
2πv

exp(−(x−m)2/(2v))

denotes the Gaussian pdf function. When f−1(y) := {z : f(z) = y} is a discrete set, the integration in the above

formula is simply replaced by a summation.
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Output: x̂tout = vtl (I + vtlA
TA)−1ATztl .

In the above descriptions of the algorithm, we adopted the convention commonly used in the AMP literature:

ηz(zr,y, v) denotes a vector with elements obtained by applying the scalar function ηz to the corresponding elements

of zr and y, and 〈·〉 denotes the empirical mean of a vector.

B. Asymptotic analysis

The asymptotic performance of GLM-EP could be described by two scalar sequences {V tl , V tr }t≥0, defined

recursively by

V tl =

(
1

mmsez
(
V t−1
r

) − 1

V t−1
r

)−1

∆
= φ(V t−1

r ), (7a)

V tr =

(
1

1
δ · E

[
V tl Λ

V tl +Λ

] − 1

V tl

)−1

∆
= Φ(V tl ), (7b)

where V t−1
r

∣∣
t=0

= 1, mmsez(Vr)
∆
= mmse

(
Z, V −1

r − 1|Y
)
, and the expectation in (7b) is w.r.t. the limiting

eigenvalue distribution of ATA. (Recall that mmse(Z, snr|U) denotes a conditional MMSE; see (2)). Equations

(7a) and (7b) are known as the state evolution (SE) for GLM-EP. More properties of the functions φ(·) and Φ(·)

are given in Appendix A.

Roughly speaking, the deterministic sequences {V tl , V tr }t≥0 are expected to be accurate predictions of {vtl , vtr}t≥0

(which are generated by GLM-EP) asymptotically. We will formalize this claim later. Further, we will show that the

per coordinate MSE of xtout (see Lemma 2 below) is characterized by

MSEΛ(V tl )
∆
= E

[
V tl

V tl + Λ

]
. (7c)

The subscript emphasizes the fact that the MSE depends on the limiting eigenvalue distribution PΛ.

Lemma 2 below gives a formal statement of the accuracy of SE, and its proof is mainly based on that of

[41, Theorem 1]. Note that [41] requires both the continuity of f and ηz . Similar to the analysis of the AMP

for rotationally-invariant matrix in [35], [59] we expect the state evolution to hold if the composite function

η̃(zr, z, v) := ηz(zr, f(z), v) is Lipschitz-continuous with respect to the first two arguments except for sets of zero

measure. Such a result would be general enough to cover many interesting applications, e.g., GLM-EP for 1-bit CS.

However, a complete proof requires careful analysis and we leave it as possible future work.

In this work, we employ a simple smoothing technique to get rid of the Lipschitz-continuity requirement on ηz .

(Note that we still require the acquisition function f to be Lipschitz-continuous.) Specifically, we construct a new

algorithm, called GLM-EP-app hereafter, which satisfies the requirements of [41]. This allows us to use SE for

predicting the performance of this algorithm. GLM-EP-app uses the following iterations:

ztl = Ct ·
(
η̃z(z

t−1
r ,y, V t−1

r )− E
[
η̃′z(Z

t−1
r , Y, V t−1

r )
]
· zt−1
r

)
, (8a)

ztr =
1

1− 1
mTr(Rt)

·
(
Rt − 1

m
Tr(Rt) · I

)
· ztl , (8b)
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where η̃ is a function for which E
[
η̃′z(Z

t−1
r , Y, V t−1

r )
]

exists, Rt ∆
= A

(
V tl I + ATA

)−1
AT, and {Ct} is a sequence

of fixed numbers. The choices we choose for η̃ and Ct (to make them close enough to GLM-EP) is discussed in the

proof of Lemma 2. Finally, similar to GLM-EP the output of GLM-EP-app is given by

x̂tout = V tl (I + V tl A
TA)−1ATztl .

Lemma 2 shows that the performance of GLM-EP-app could be arbitrarily close to the SE prediction. The details

of the proof can be found in Appendix D.

Lemma 2. Suppose Assumptions (A.1)-(A.3) hold. Additionally, assume f : R 7→ Y to be Lipschitz continuous.

Let {V tl , V tr }t≥0 be generated according to (7). For any ε > 0, there exists η̃z and {Ct}t≥0 such that x̂tout of

GLM-EP-app satisfies

MSEΛ(V tl )− ε ≤ 1

m

∥∥x̂tout − x
∥∥2
< MSEΛ(V tl ) + ε, (9)

almost surely as m,n→∞ with m/n→ δ ∈ (1,∞), where MSEΛ is defined in (7c).

Note that we still require the acquisition function f to be Lipschitz-continuous. Hence, Lemma 2 does not apply

to 1-bit CS. Nevertheless, we expect the state evolution of GLM-EP holds for 1-bit CS as well.

According to Lemma 2, the asymptotic MSE of GLM-EP-app in the large system limit as t→∞ can be obtained

from the limiting value of V tr (or V tl ). Since this quantity is of particular importance to us, we will characterize it

in the following lemma.

Lemma 3 (MSE performance). Suppose δ > 1. Define V ?r by

V ?r
∆
= inf

{
v ∈ [0, 1] : P (vr) > 0,∀vr ∈ [v, 1]

}
. (10)

where

P (vr)
∆
= E

[
φ(vr)

φ(vr) + Λ

]
−
[
1− δ

(
1− mmsez(vr)

vr

)]
︸ ︷︷ ︸

g(vr)

. (11)

In case P (1) = 0, we define V ?r = 1. Let {V tl , V tr }t≥0 be sequences generated according to (7) with V t−1
r

∣∣
t=0

= 1.

We have

lim
t→∞

V tr = V ?r .

Further, the final MSE is given by MSE?Λ
∆
= MSEΛ(φ(V ?r )), where φ is defined in (7a).

The proof of this lemma can be found in Appendix E-A. A direct consequence of Lemma 3 is the perfect

reconstruction condition stated in Lemma 4 below.

Lemma 4 (Perfect reconstruction condition). Let {V tl , V tr }t≥0 be a sequence generated through (7) with V t−1
r

∣∣
t=0

=

1, and let MSE?Λ be the final MSE. Then, the following hold.

(i) MSE?Λ = 0 if and only if

P (vr) > 0, ∀vr ∈ (0, 1], (12)
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where P (vr) is defined in (11).

(ii) If there exists a spectrum PΛ such that MSE?Λ = 0, then δ ≥ 1/d(Y ). Conversely, if δ > 1/d(Y ) and

mmsez(1) < 1, then there exists a spectrum PΛ such that MSE?Λ = 0.

The proofs of Lemma 4 can be found in Appendix E-B. It should be noted that to approach the lower bound

using GLM-EP, the function f has to satisfy the requirement mmsez(1) < 1. This is a regularity condition that

makes sure the SE equation (7) does not have a undesirable fixed point at Vr = 1. Notably, this condition does not

hold when f is an even function (e.g., f(z) = |z|). For such functions, the achievability result is still valid if there

is a small amount of side information about the signal. Alternatively, one might consider using the spectral method

to initialize the GLM-EP algorithm [17], [61], [62].

IV. IMPACT OF SENSING MATRIX SPECTRUM

In this section, we use Lemmas 3 and 4 to study the impact of the sensing matrix on the MSE performance of

GLM-EP-app. Before presenting our detailed analysis, we first discuss the so-called Lorenz order that compares the

“spikiness” of different distributions.

A. A measure of spikiness of distributions

A natural tool to compare the spikiness of the distributions of two non-negative random variables is Lorenz partial

order [28]. (Since it is a partial order, there exist distributions that are not comparable in the Lorenz sense.) Lorenz

order is widely used to characterize wealth inequality, and is closely related to majorization, a tool that has been

extensively studied for transceiver design in communication systems [60].

Definition 3 (Lorenz partial order [28]). Consider a nonnegative random variable with cumulative density function

F (x). Let F−1(y) be the quantile function defined by

F−1(y) = sup{x : F (x) ≤ y}, 0 < y < 1. (13)

The Lorenz curve corresponding to F (x) is defined by

L(u) =

∫ u
0
F−1(y)dy∫ 1

0
F−1(y)dy

, 0 ≤ u ≤ 1.

Let X and Y be two nonnegative random variables, and LX(u) and LY (u) be the corresponding Lorenz curves.

We say X is less spiky than Y in the Lorenz sense, denoted as X �L Y , if LX(u) ≥ LY (u) for every u ∈ [0, 1].

Conversely, X �L Y if LX(u) ≤ LY (u) for every u ∈ [0, 1].

The use of Lorenz order to measure spikeness of distribution is very natural. In the context of income inequality,

Lorenz curve has the following interpretation – the poorest 100 × u percentage of the population contribute to

100×LX(u) percentage of the total wealth. Therefore, a larger LX(u) represents a more equal (or less spiky) income

distribution. Fig. 2 demonstrates the Lorenz curves for the uniform distribution (corresponding to the spectrum of

a column-orthonormal matrix) and the Marchenko-Pastur distribution (corresponding to the spectrum of an i.i.d.

Gaussian matrix).
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Fig. 2: Lorenz curves corresponding to the eigenvalue distributions of an i.i.d. Gaussian matrix and a partial

orthogonal matrix. δ = 2.

An important property of Lorenz partial ordering is the following.

Lemma 5 ( [28]). Suppose X ≥ 0, Y ≥ 0 and E[X] = E[Y ]. We have X �L Y if and only if E[h(X)] ≤ E[h(Y )]

for every continuous convex function h : R+ → R.

B. Impact on MSE

Let Λ1 ∼ PΛ1
and Λ2 ∼ PΛ2

be two limiting eigenvalue distributions of ATA. Let V ?Λ1
and V ?Λ2

denote the

corresponding limiting values of V tr (as t→∞) in (7) (proving that the iterations (7) converge to a fixed point is

straightforward). The associated MSEs, denoted as MSE?Λ1
and MSE?Λ2

, can be compared according to the following

lemma. See Appendix F for its proof.

Lemma 6. Let δ > 1. Suppose PΛ1
is more spiky than PΛ2

in the Lorenz sense, i.e., Λ1 �L Λ2. Define

G(vr; δ)
∆
= max

(
g(vr), 0

)
, ∀vr ∈ [0, 1], (14)

where g(·) is defined in (11). We have

• If G(vr; δ) is non-decreasing on vr ∈ [0, 1], then MSE?Λ1
≤ MSE?Λ2

;

• If G(vr; δ) is non-increasing on vr ∈ [0, 1], then MSE?Λ1
≥ MSE?Λ2

;

• If G(vr; δ) is not monotonic, then the comparison of MSE?Λ1
and MSE?Λ2

is not definite.

Remark 2. Notice that the function G(vr; δ) depends on the sampling ratio δ, as can be seen from the definitions

in (14) and (11). (To keep notation light, we do not make such dependency explicit for g(vr) and P (vr) though.)

Hence, for a given f , the monotonicity of G(vr; δ) could change as δ varies.

Lemma 6 shows that the impact of the spectrum on the final MSE performance of GLM-EP-app depends on the

monotonicity of the function G(vr; δ) (which further depends on f ). For a given f and δ, the function G(vr; δ) can
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Fig. 3: Illustration of G(vr; δ) for four choices of f . From left to right: f(z) = |z|, f(z) = max(−1,min(z, 1)),

f(z) = sign(z), f(z) = |z|1|z|<1 + (|z| − 1)1|z|≥1. δ = 1.1.

be numerically computed and its monotonicity can be easily checked. Below are four examples of f , corresponding

to each of the cases discussed in Lemma 6; see Fig. 3.

Example 1: It can be shown that that G(vr; δ) of the following f is non-decreasing for all δ > 1:

f(z) = |z|.

For such f , spiky spectrums are beneficial for MSE performance.

Example 2: The G(vr; δ) of the following function is non-increasing for all δ > 1:

f(z) = sign(z).

For this example, flatter spectrums are better.

Example 3: The G(vr; δ) of the following function is non-increasing for all δ > 1:

f(z) = max(−1,min(z, 1)).

For this example, flatter spectrums are better.

Example 4: Consider the following function

f(z) =

|z|, if |z| < 1

|z| − 1, if |z| ≥ 1.

(15)

In this case, G(vr; δ) is not monotonic and the impact of the spectrum is not solely determined by the Lorenz order.

C. Impact of spectrum on perfect recovery threshold

We have shown that the impact of the spikiness of the spectrum on the MSE performance is related to the

monotonicity of the function G(vr; δ) which depends on the nonlinear function f and the sampling ratio δ. In this

section, we will show that if our goal is to minimize the number of measurements required for perfect reconstruction,

then more spiky spectrum benefit GLM-EP-app for all f . Furthermore, the information theoretic lower bound δp
opt
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can be reached (as close as we wish) if the spectrum of A is spiky enough. Theorem 3, whose proof can be found

in Appendix G, summarizes the above discussions.

Theorem 3. For a given nonlinearity f and eigenvalue distribution PΛ, let δalgΛ be the minimum δ required for

perfectly recovering the signal, i.e.,

δalgΛ
∆
= inf {δ : MSE?Λ = 0} , (16)

where MSE?Λ is defined in Lemma 3. Let Λ1 and Λ2 denote two limiting eigenvalue distributions and δalgΛ1
and δalgΛ2

the corresponding thresholds for perfect reconstruction. We have δalgΛ1
≤ δalgΛ2

if Λ1 �L Λ2.

D. Noise Sensitivity Analysis

Up to now, we only studied the performance of GLM-EP-app in the noiseless setting. In practice, it is also

important to guarantee that the reconstruction performance does not significantly worsen due to the presence of a

small amount of measurement noise. We consider the noisy model in (4). GLM-EP-app remains unchanged except

that ηz is replaced by a posterior mean estimator that takes the noise effect into consideration.

The following lemma analyzes the MSE performance of GLM-EP-app in the high SNR regime, and shows that

its reconstruction is stable when δ is larger than the corresponding perfect recovery threshold. The proof of Lemma

7 and other details about GLM-EP-app in the noisy setting are provided in Section H.

Lemma 7. Assume d(Y 6= 0. Let δ > δalgΛ , where δalgΛ is defined in Theorem 3. Let MSE?Λ(σ2
w)

∆
= limt→∞MSEΛ(V tl )

be the MSE in the noisy setting. As σ2
w → 0, we have

MSE?Λ(σ2
w) = C(δ, f)E

[
Λ−1

]
σ2
w · (1 + o(1)),

where 0 < C(δ, f) <∞ is a constant depending only on δ and f .

This lemma confirms that as long as δ > δalgΛ , GLM-EP-app can offer stable recovery. However, the minimum

mean square error in this case depends on another feature of the spectrum, namely E
[
Λ−1

]
. The optimal sensing

mechanism should be designed by considering both features based on the expected noise level in the system.

V. SIMULATION RESULTS

We next provide some simulation results for the GLM-EP algorithm for a few instances of f . Note that all our

simulations are carried out using the original GLM-EP algorithm. Our results will show that the state evolution

predictions are very accurate even without the smoothing introduced in Lemma 2.

A. Sensing Matrix Model

Let A = UΣV T. In our experiments, we approximate the random orthogonal matrix U in the following way:

U = P1UdP2U
T
d P3

where P1,P2,P3 are three diagonal matrices with entries independently chosen from ±1 with equal probability,

and Ud is a discrete cosine transform (DCT) matrix. Note that all matrices are square. The hope is that by injecting
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enough randomness in these matrices, we can make them look like Haar orthogonal matrices for GLM-EP. In

addition, such constructions allow fast implementation of GLM-EP using the DCT.

Following [63], we consider a geometric distribution for the limiting empirical distribution of diag(ΣTΣ):

PΛ(λ;α, β) =


1
βλ , if λ ∈

(
αA(β)e−β , αA(β)

]
,

0, otherwise,
(17)

where α > 0 is the mean, β ≥ 0 controls the spikeness of the distribution (with β = 0 corresponding to a flat

spectrum), and A(β) = β
1−e−β . In all of our numerical experiments, the empirical eigenvalues are independently

sampled from this distribution.

B. Accuracy of state evolution
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Fig. 4: MSE performance of GLM-EP in the noiseless setting. Left: f(z) = |z|. Right: f(z) defined in (15).

n = 2× 105. m = d1.01 · ne. β = 20. 1000 independent runs. The markers labeled ‘SE’ are predictions obtained

from state evolution.

Figure 4 demonstrates the mean-square error (MSE) performances of GLM-EP for f(z) = |z| and the function

defined in (15). Clearly, d(Y ) = 1 for both functions. As Theorem 3, shows, the GLM-EP algorithm could achieve

perfect reconstruction as soon as δ > 1 with a very spiky sensing matrix. Here, we considered the geometric

eigenvalue setup with β = 20. From Fig. 4, we see that GLM-EP recovers the signal accurately when δ is only

slightly larger than the lower bound (δ = 1.01). Note that both f considered in Fig. 4 are even functions, and

for such functions the state evolution has a fixed point at (Vr, Vl) = (1,∞) (see Lemma 12), commonly referred

to as the uninformative fixed point. This implies that the GLM-EP algorithm does not work for these f if z−1
r

is uncorrelated with the signal. In our experiments, to get rid of the uninformative fixed point issue, we set

z−1
r = (1 + V )−1(z +

√
V n) where n is standard Gaussian and V is a large constant (here we set V = 20).
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C. Performance for medium-sized systems

Fig. 5 shows the performance of GLM-EP for medium-sized sensing matrices (n = 5000). Other settings are the

same as Fig. 4. In this case, we can observe a mismatch between the performance of GLM-EP and its theoretical

predictions. Nevertheless, GLM-EP still achieve very good reconstruction result considering the fact that δ ≈ 1.01 is

very close to the information theoretical lower bound.
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Fig. 5: MSE performance of GLM-EP for medium-size systems. Left: f(z) = |z|. Right: f(z) defined in (15).

n = 5000. MSE are averaged over 1000 independent runs. Other settings are the same as those of Fig. 4.

D. 1-bit CS performance

For the 1-bit compressed sensing (CS) problem, it is impossible to recover the signal accurately (namely, achieve

zero MSE) at finite δ. Tab. I lists the MSE of GLM-EP for 1-bit CS under different values of δ and β. As expected,

its performance improves as δ increases. Also, for each δ, the MSE performances worsen as β increases, which is

consistent with our theoretical result about the impact of the spikeness.

δ 1.5 2 2.5 3 3.5 4 4.5 5

β = 0 0.2771 0.2091 0.1622 0.1286 0.1042 0.0846 0.0714 0.0607

β = 5 0.4545 0.3886 0.3376 0.2953 0.2617 0.2327 0.2075 0.1864

β = 10 0.6275 0.5857 0.5528 0.5240 0.5016 0.4802 0.4599 0.4439

TABLE I: MSE of GLM-EP for the 1-bit CS problem. n = 105. The MSE is averaged over 100 independent runs.

The number of iterations is 20.

May 13, 2023 DRAFT



16

E. Noisy measurements

Lemma 7 analyzes the stability of the GLM-EP reconstruction for the noisy model y = f(Ax + w). Tab. II

shows that the performance of GLM-EP for noisy phase retrieval. Here, the signal-to-noise ratio (SNR) is defined by

SNR ∆
=

E[‖Ax‖2]

E[‖w‖2]
.

Results in Tab. II suggests that the performance of GLM-EP degrades gracefully as the noise variance increases.

SNR 30dB 35dB 40dB 45dB 50dB

MSE 1.28e-01 5.92e-02 2.18e-02 6.94e-03 2.14e-03

TABLE II: MSE of GLM-EP for noisy phase retrieval. δ = 1.1. n = 105. β = 10. The MSE is averaged over 100

independent runs. The number of iterations is 10.

F. Phase transition

To test the impact of the sensing spectrum on the performance of GLM-EP, we carry out phase transition study

in Fig. 6 under various values of β. We consider two instances of f , the absolute value function and that defined

in (15). We see that for both functions, the empirical perfect recovery threshold of δ improves as β increases

(corresponding to spikier spectrum), which is consistent with the claim of Theorem 3.
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Fig. 6: Phase transition of GLM-EP under various sensing matrix spectral. Left: f(z) = |z|. Right: f(z) defined in

(15). n = 2× 105. Error bars are calculated based on 100 independent runs.

VI. CONCLUSION AND FUTURE WORK

We studied the impact of the spectrum of the sensing matrix on the performance of the expectation propagation

(EP) algorithm in recovering signals from the nonlinear model y = f(Ax). We defined a notion of spikiness of the
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distributions and showed that depending on f(·), the spikiness of the distribution can help or hurt the performance

of EP. We also showed that spiky sensing matrices can always reduce the number of observations required for the

exact recovery of x from y.

The results in this paper can serve as the first step towards the optimal design of sensing matrices. However, there

are several directions that require further investigation before one can apply our results to real-world applications:

(i) Since the structure of the signal is often used in recovery algorithms, the role of the structure should be studied

more carefully when we deal with spiky sensing matrices. (ii) While we discussed the high-signal-to-noise ratio

regime in the paper, some applications have low signal-to-noise ratios. The impact of the spectrum of the sensing

matrix in such cases requires more careful considerations.

APPENDIX A

AUXILIARY RESULTS ABOUT MMSE DIMENSION AND THE STATE EVOLUTION MAPS

In this section, after introducing the conditional MMSE dimension D(Z|Y ), we present a few properties of

mmsez(·) and the SE maps φ(·), Φ(·).

A. MMSE Dimension and information dimension

The MMSE dimension D(Z) defined below characterizes the high SNR behavior of the MMSE mmse(Z, snr).

Similarly, D(Z|U) characterizes the high SNR behavior of mmse(Z, snr|U).

Definition 4 (MMSE dimension [70]). The following limits, if exist, is called the MMSE dimension (resp. conditional

MMSE dimension):

D(Z) = lim
snr→∞

snr ·mmse(Z, snr),

D(Z|U) = lim
snr→∞

snr ·mmse(Z, snr|U).
(18)

The following lemma establishes the connection between the conditional MMSE dimension D(Z|Y ) and the

information dimension d(Y ) (see Section I-C).

Lemma 8. Suppose Assumption (A.3) holds. Let Z ∼ N (0, 1) and Y = f(Z). We have

d(Y ) = 1−D(Z|Y ).

Proof. The conditional MMSE dimension can be calculated as follows:

D(Z|Y ) = lim
snr→∞

snr ·mmse(Z, snr|Y )

= lim
snr→∞

snr · E
[(
Z − E[Z|

√
snrZ +N,Y

)2]
a
= lim

snr→∞
snr · E

[(
Z − E[Zy|

√
snrZy +N ]

)2]
∆
= lim

snr→∞
snr · EY [mmse(Zy, snr)]

(19)
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where Zy ∼ PZ|Z∈f−1(y) and N is independent of Z. Note that mmse(Zy, snr) ≤ snr−1 [53]5 and so snr ·

mmse(Zu, snr) ≤ 1. Hence, by Lebesgue’s dominated convergence theorem we have

D(Z|Y ) = EY
[

lim
snr→∞

snr ·mmse(Zy, snr)
]

= EY [D(Zy)] ,

(20)

provided that limsnr→∞ snr ·mmse(Zy, snr) exists almost surely. From [70, Theorem 10 and Theorem 11],

D(Zy) =

0 if PZ|Y=y is discrete

1 if PZ|Y=y is absolutely continuous w.r.t. Lebesgue measure

This implies that

D(Zy) =

0 if y ∈ R\Qf

1 if y ∈ Qf .

Hence,

D(Z|Y ) = P{f(Z) ∈ Qf} = 1− d(Y ),

where the second identity follows from Lemma 1.

B. A property of mmsez(vr)

Note that ηz(zr, y, v) in GLM-EP (see (6f)) is an MMSE estimator:

ηz(zr, y, v) = E[Z|Y = y, Zr = zr] =

∫
f−1(y)

u · N (u; zr, v)du∫
f−1(y)

N (u; zr, v)du
, (21)

where (Z,Zr) ∼ N (0,Σ) where

Σ
∆
=

 1 1− vr
1− vr 1− vr

 , (22)

and Y = f(Z). Recall that mmsez(vr) is defined as

mmsez(vr) = E
(
Z − E[Z|Zr, Y ]

)2

, (23)

Lemma 9 below is a consequence of the covariance structure of (Z,Zr) defined in (22).

Lemma 9. Let mmsez(vr) be the MMSE defined in (23). Let Z ∼ N (0, 1), Y = f(Z) and vr ∈ (0, 1]. We have

mmsez(vr) = mmse(Z, v−1
r − 1|Y ),

where the right hand side is a conditional MMSE defined in (2).

5This is true even when the moments of Zu do not exist. To see this, consider Ỹ =
√
snrZu +N and the linear estimator Ỹ /

√
snr. The

MSE of this linear estimator is snr−1 and hence mmse(Zu, snr) ≤ snr−1.
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C. Properties of the SE maps

In this appendix, we discuss a few properties of the maps φ and Φ in (7):

φ(vr) =

(
1

mmsez (vr)
− 1

vr

)−1

. (24a)

Φ(vl) =

 1

1
δ · E

[
vlΛ
vl+Λ

] − 1

vl

−1

, (24b)

where the expectation in Φ is over Λ, which is distributed according to the asymptotic eigenvalue distribution of

ATA, and

mmsez(vr)
∆
= mmse

(
Z, v−1

r − 1|f(Z)
)
.

The following lemmas collect some useful properties of the MMSE [71], and the maps φ, Φ.

Lemma 10 (Properties of mmse(Z, snr|U)). The following hold:

(i) Assume Z ∼ N (0, 1). Then, mmse(Z, snr|U) ≤ 1
1+snr , ∀snr > 0. Further, the inequality is strict if U is not

independent of Z.

(ii) d
dsnrmmse(Z, snr|U) = −E

(
var2[Z|

√
snrZ +N,U ]

)
, where var[Z|

√
snrZ+N,U ]

∆
= E[Z2|

√
snrZ+N,U ]−

E2[Z|
√
snrZ +N,U ], and N ∼ N (0, 1) is independent of (Z,U).

Lemma 11 (Properties of φ and Φ). The functions φ and Φ defined in (24) have the following properties:

(i) φ(vr) is continuous and non-decreasing in vr ∈ (0, 1). If f(z) is not an invertible function, φ(vr) is strictly

increasing. Suppose that f(Z) is not independent of Z ∼ N (0, 1). Then, 0 ≤ φ(vr) < ∞ and φ(0) = 0 if

d(f(Z)) 6= 0, and φ(1) <∞ if E[Z|f(Z)] 6= 0;

(ii) Φ(vl) is continuous and strictly increasing in vl ∈ (0,∞). Further, Φ(0) = 0 and Φ(∞) = 1.

Proof. Proof of (i): The continuity of φ(vr) is due to the continuity of the function mmsez(vr) = mmse(Z, snr|Y ),

where snr = v−1
r − 1 [71].

We next prove that φ is strictly increasing. Differentiation yields (see (24))

φ′(vr) =
v2
r ·mmse′z(vr)−mmse2

z(vr)

(vr −mmsez(vr))
2 . (25a)

Hence, we only need to prove

mmse′z(vr) >
1

v2
r

·mmse2
z(vr), ∀vr ∈ (0, 1]. (26a)

Recall the definition

mmsez(vr) = mmse(Z, snr|Y ), snr
∆
= v−1

r − 1,

and the derivative formula of the conditional MMSE in Lemma 10, we have

mmse′z(vr) =
1

v2
r

· E
(
var2[Z|

√
snrZ +N,Y ]

)
, ∀vr ∈ (0, 1]. (27)
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Further,

mmsez(vr) = mmse(Z, snr|Y ) = E
(
var[Z|

√
snrZ +N,Y ]

)
(28)

Combining (27) and (28), and applying Jensen’s inequality proves mmse′z(vr) ≥ 1
v2
r
·mmse2

z(vr), and equality holds

only when var[Z|
√
snrZ+N,Y ] is constant with respect to realizations of

√
snrZ+N and Y . This is only possible

when Zy ∼ PZ|Y=y is Gaussian with var[Zy] invariant to y (including the degenerate case where var[Zy] = 0).

Again, this is only possible when f(z) is an invertible function for which Zy is a constant and var[Zy] = 0). To

summarize, when f(z) is not an invertible function, (26a) holds and so φ is a strictly increasing function.

Finally, we verify φ(0) and φ(1). First, for any vr ∈ (0, 1), we have

mmsez(vr) = mmse(Z, snr|Y ) (snr = v−1
r − 1)

(a)

≤ mmse(Z, snr)

=
1

1 + snr

= vr

(29)

where step (a) is from the fact that conditioning reduces MMSE [71, Proposition 11]. Further, the inequality is strict

for vr 6= 1 (snr > 0) whenever f(Z) is not independent of Z. It follows that

φ(vr) =

(
1

mmsez(vr)
− 1

vr

)−1

∈ [0,∞), ∀vr ∈ (0, 1).

Further, φ(vr) is continuously increasing in (0, 1) and so the limit limvr→0+
φ(vr) exists (which is defined to be

φ(0)). Hence, φ(0) ≥ 0.

Lemma 8 shows d(Y ) = 1−D(Z|Y ). Hence, if d(Y ) 6= 0, we would have

D(Z|Y )
∆
= lim

snr→∞
snr ·mmse(Z, snr|Y ) < 1.

Then,

φ(0)
∆
= lim
vr→0

φ(vr)

= lim
vr→0

mmsez(vr)

1− mmsez(vr)
vr

(a)
= lim

snr→∞
mmse(Z, snr|Y )

1− (snr + 1)mmse(Z, snr|Y )
(snr = v−1

r − 1)

= 0

where step (a) follows from the definition of mmsez below (7), and the fact that limsnr→∞mmse(Z, snr|Y ) = 0

and limsnr→∞ snr ·mmse(Z, snr|Y ) = D(Z|Y ) < 1.
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Finally,

φ(1) =

(
1

mmsez(1)
− 1

)−1

=

(
1

mmse(Z, snr = 0|Y )
− 1

)−1

=

(
1

E (var[Z|Y ])
− 1

)−1

=

(
1

E (E[Z2|Y ]− E2[Z|Y ])
− 1

)−1

=

(
1

1− E (E2[Z|Y ])
− 1

)−1

(E[Z2] = 1),

(30)

where E[Z2] = 1 since Z ∼ N (0, 1). Hence, φ(1) ≥ 0 and φ(1) <∞ if E[Z|Y ] 6= 0.

Proof of (ii): Similar to the proof of part (i), to prove Φ(vl) is increasing, we only need to verify

1

δ
E

[(
vlΛ

vl + Λ

)2
]
>

(
1

δ
E
[
vlΛ

vl + Λ

])2

, ∀vr ∈ (0, 1]. (31)

When δ > 1, Jensen’s inequality yields the result:

1

δ
E

[(
vlΛ

vl + Λ

)2
]
>

1

δ

(
E
[
vlΛ

vl + Λ

])2

>

(
1

δ
E
[
vlΛ

vl + Λ

])2

, ∀vr ∈ (0, 1].

For δ ≤ 1, note that PΛ = (1− δ)P0 + δPΛ̃ where PΛ̃ denotes the asymptotic eigenvalue distribution of AAT (we

have E[Λ̃2] = 1). Hence, (31) can be reformulated as

E

( vlΛ̃

vl + Λ̃

)2
 > (E[ vlΛ̃

vl + Λ̃

])2

, ∀vr ∈ (0, 1],

and holds due to Jensen’s inequality.

Lemma 12. If f(z) = f(−z),∀z, then mmsez(1) = 1. Further, (Vr, Vl) = (1,∞) is a fixed point of the state

evolution equations in (7).

Proof. Recall that mmsez(vr) = mmse(Z, v−1
r − 1|Y ). Hence, mmsez(1) = mmse(Z, snr = 0|Y ) and

mmse(Z, snr = 0|Y ) = E
(
E[|Z|2|Y ]− E2[Z|Y ]

)
= E

(
E[|Z|2|Y ]

)
= E[|Z|2] = 1.

A simple calculation shows that (Vr, Vl) = (1, 0) is a fixed point of (7).

Lemma 13. Consider two independent Gaussian RVs: Z ∼ N (0, τ) and W ∼ N (0, 1). Suppose U = Z + σwW

and Yσ ∼ PYσ , where PYσ ∝ PU · PYσ|U and PYσ|U is an arbitrary distribution. Define Z⊥u
∆
= Z − τ

τ+σ2
w
U . Then,

we have Z⊥u ‚ (U, Yσ), where A‚ B means that A and B are independent.

Proof. It is straightforward to show Z⊥u ‚ U . Since Yσ is generated from U , we also have Z⊥u ‚ Yσ .

The following lemma summarizes a few useful properties of φ(vr, σ
2
w) (which is the noisy counterpart of φ(vr)).
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Lemma 14. Define

mmsez(vr, σ
2
w)

∆
= E

[
(E[Z|Yσ, Zr]− Z)

2
]
, (32)

where Zr = (1− vr)Z +
√
vr(1− vr)N , Yσ = f(Z + σwW ), Z,W,N are mutually independent standar Gaussian

RVs. Define

φ(vr, σ
2
w) =

(
1

mmsez(vr, σ2
w)
− 1

vr

)−1

. (33)

For any σw > 0 and vr ∈ (0, 1), φ(vr, σ
2
w) satisfies the following:

(i) φ(vr, σ
2
w) is continuous and increasing in vr ∈ [0, 1). Further, φ(vr, σ

2
w) ≥ 0;

(ii) σ2
w ≤ φ(vr, σ

2
w) <∞, ∀vr ∈ [0, 1).

Proof. Part (i): Same as Lemma 11-(i).

Part (ii): We will show that mmse(vr, σ
2
w) can be rewritten as

mmsez(vr, σ
2
w) =

(
vr

vr + σ2
w

)2

· E
(
U − E[U |Zr, Yσ]

)2

+
vrσ

2
w

vr + σ2
w

, (34)

where U = Z + σwW , Yσ = f(U), and (U,Zr) ∼ N (0,Σ) where

Σ =

1 + σ2
w 1− vr

1− vr 1− vr

 .
From (34) we have

mmsez(vr, σ
2
w) ≥ vrσ

2
w

vr + σ2
w

,

which together with (33) yields φ(vr, σ
2
w) ≥ σ2

w. We next prove the boundedness of φ(vr, σ
2
w). Substituting (34)

into (33) and after straightforward calculations, we have

φ(vr, σ
2
w) =

vr · E
(
U − E[U |Zr, Yσ]

)2

vr + σ2
w − E

(
U − E[U |Zr, Yσ]

)2 .

Since conditioning reduces MMSE [53, Proposition 11], we have

E
(
U − E[U |Zr, Yσ]

)2

≤ E
(
U − E[U |Zr]

)2

= vr + σ2
w,

where the inequality is strict whenever Yσ is not independent of U . All together, we have φ(vr, σ
2
w) <∞.

It only remains to prove (34). Let us write Z = Zr + Z̃, where Z̃ ∼ N (0, vr) is independent of Zr. We have

Ũ
∆
= U − Zr = Z̃ + σwW.

Define

Z̃⊥ũ
∆
= Z̃ − vr

vr + σ2
w

Ũ .
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By construction, Z̃⊥ũ ‚ Ũ . We also have Z̃⊥ũ ‚ Zr
6, since Z̃⊥ũ a linear combination of Z̃ and W and the latter

two RVs are independent of Zr. Also, Z̃⊥ũ ‚ Yσ according to Lemma 13. Hence,

E[Z̃|Zr, Yσ] =
vr

vr + σ2
w

· E[Ũ |Zr, Yσ] + E[Z̃⊥ũ |Zr, Yσ]

=
vr

vr + σ2
w

· E[Ũ |Zr, Yσ],

where the last step is due to the independence of Z̃⊥ũ and (Zr, Yσ) and the fact that Z̃⊥ũ is zero-mean Gaussian.

Hence, we have

E
(
Z − E[Z|Zr, Yσ]

)2

= E
(
Z̃ − E[Z̃|Zr, Yσ]

)2

= E
( vr
vr + σ2

w

Ũ + Z̃⊥ũ − E[Z̃|Zr, Yσ]
)2

= E
( vr
vr + σ2

w

Ũ + Z̃⊥ũ −
vr

vr + σ2
w

· E[Ũ |Zr, Yσ]
)2

(a)
=

(
vr

vr + σ2
w

)2

· E
(
Ũ − E[Ũ |Zr, Yσ]

)2

+
vrσ

2
w

vr + σ2
w

=

(
vr

vr + σ2
w

)2

· E
(
U − E[U |Zr, Yσ]

)2

+
vrσ

2
w

vr + σ2
w

where step (a) is due to the fact that Z̃⊥ũ ‚ (Ũ , Zr, Yσ) and E[(Z̃⊥ũ )2] =
vrσ

2
w

vr+σ2
w

.

APPENDIX B

PROOF OF THEOREM 1

We first recall a few definitions and useful lemmas from [49], [50] in Section B-A. Then, we introduce our main

technical lemma in Section B-B, and finally prove Theorem 1 in Section B-C.

A. Minkowski dimension

In the almost lossless analog signal compression framework developed in [49], [50], the description complexity of

bounded sets is gauged via their Minkowski dimension. Minkowski dimension is also called box-counting dimension

[64] (hence the subscript B in the notation dimB).

Definition 5 (Minkowski Dimension). Let S be a nonempty bounded subset of a metric space. The upper Minkowski

dimension of S is defined as

dimB(S) = lim sup
ε→0

logNS(ε)

log 1
ε

, (35)

where NS(ε) is the ε-covering number of S, that is

NS(ε)
∆
= min

{
k : S ⊂

k⋃
i=1

B(xi, ε), Xi ∈ S
}
,

where B(xi, ε) denotes a ball centered at xi with radius ε.

6Throughout this paper, A‚ B denotes the random variables A and B are independent
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For a probability measure, we define its ε-Minkowski dimension [50] as the smallest Minkowski dimension among

all sets with measure at least 1− ε.

Definition 6 (ε-Minkowski Dimension). Let µ be a probability measure on Rn. Define the ε-Minkowski dimension

of µ as

dim
ε

B(µ) = inf{dimB(S) : µ(S) ≥ 1− ε}. (36)

An asymptotic version of the ε-Minkowski dimension (called the Minkowski dimension compression rate) was

introduced in [49]. Wu and Verdú [49] proved that the probability measure of an i.i.d. source concentrates on sets

with Minkowski dimension approximately equal to the Rényi information dimension of the measure.

We will use the following lemma from [49] in the proof of the auxiliary lemma in Section B-B.

Lemma 15 (Minkowski dimension in Euclidean spaces). Let S be a bounded subset in (Rn, ‖ · ‖2). The Minkowski

dimension satisfies

dimB(S) = lim sup
q→∞

log
∣∣〈S〉2q ∣∣
q

(37)

where 〈x〉p
∆
= bpxc/p, and 〈S〉p

∆
= {〈x〉p : x ∈ S}, and the logarithm uses base 2.

Lemma 15 shows that in Euclidean spaces, we could replace ε-balls by mesh cubes in defining covering number for

Minkowski dimension. The similar forms of (37) and Definition 1 suggest the close relationship between Minkowski

dimension and information dimension. Roughly speaking, Minkowski dimension counts the number of small pieces

needed to cover the set while the information dimension also takes into account the probability of each piece and

replaces the logNS(ε) term in (35) by an entropy term.

B. An Auxiliary Lemma

We introduce a few definitions. First, recall the definition

Qf
∆
= {y : f−1(y) contains an interval},

where f−1(y)
∆
= {z : f(z) = y}. We assumed Qf to be a finite set. For y ∈ Rm, let

Spt(y)
∆
= {i = 1, . . . ,m : yi ∈ R\Qf} (38)

be a kind of generalized support of y [49] (i.e., locations of the components of y that do not fall into the “flat”

sections of f ).

For convenience, we introduce the following definitions:

Aα
∆
=

{
s ∈ Rn : y = f(A(s)),

|Spt(y)|
m

≤ α
}

and Bα
∆
=

{
y ∈ Rm :

|Spt(y)|
m

≤ α
}
,

Ar
∆
= {s ∈ Rn : y = f(A(s)), ‖y‖ ≤ r} and Br

∆
= {y ∈ Rm : ‖y‖ ≤ r} .

(39)

Further, let A and B be the set of signals and measurements that can be perfectly reconstructed under decoder g.

More specifically,

A ∆
= {s ∈ Rn : g(f(As)) = s} and B ∆

= {f(As) : s ∈ A} .
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Clearly, the composite function f ◦A is invertible (with g being the inverse function) if we restrict its domain and

co-domain to A and B respectively. With the above definitions, we have

B ∩ Bα ∩ Br =

{
y : y ∈ B, |Spt(y)|

m
≤ α, ‖y‖ ≤ r

}
,

and

g (B ∩ Bα ∩ Br) =

{
g(y) : y ∈ B, |Spt(y)|

m
≤ α, ‖y‖ ≤ r

}
=

{
s : s ∈ A, |Spt(g−1(s))|

m
≤ α, ‖g−1(s)‖ ≤ r

}
=

{
s : s ∈ A, |Spt(f(As))|

m
≤ α, ‖f(As)‖ ≤ r

}
= A ∩Aα ∩ Ar.

Lemma 16, which is a variation of [50, Theorem 5], is key to our proof of Theorem 1. Notice that Lemma 16 is

a non-asymptotic result. Also, the radius r of the boundedness constraint does not appear in (41).

Lemma 16. Let PX be an arbitrary absolutely continuous distribution with respect to the Lebesgue measure and

x ∼
∏n
i=1 PX(xi) a random vector. Suppose that for some α ∈ (0, 1], r > 0 and ε ∈ (0, 1), there exists a matrix

A ∈ Rm×n and a Lipschitz continuous decoder g : Ym 7→ Rn such that

P
{
x ∈ A ∩Aα ∩ Ar

}
≥ 1− ε, (40)

where the probability is taken over x. Then, necessarily we have

m

n
≥ 1− ε

α
. (41)

Proof. Our proof follows from the following chain of inequalities:

α ·m
(a)

≥ dimB(Bα ∩ Br)

≥ dimB(Bα ∩ Br ∩ B)

(b)

≥ dimB(g(Bα ∩ Br ∩ B))

= dimB(Aα ∩ Ar ∩ A)

(c)

≥ dim
ε

B(Px)

(d)

≥ d̄(x)− εn
(e)
= (1− ε)n

where step (b) is from the fact that Minkowski dimension does not increase under Lipschitz mapping [65, Proposition

2.5], and step (c) is from the definition of ε-Minkowski dimension (see Definition 6) and P {x ∈ A ∩Aα ∩ Ar} ≥

1 − ε, step (d) is proved in [50, Theorem 5], and step (e) is from the fact that d(x) = n · d(X) = n when

x ∼
∏n
i PX(xi) and PX is absolutely continuous.
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It remains to prove step (a). Now, we use Lemma 15:

dimB(Bα ∩ Br) = lim sup
M→∞

log
∣∣〈Bα ∩ Br〉M ∣∣

logM
,

where 〈Bα ∩ Br〉M is a set obtained by applying the discretization operator 〈y〉M = bMyc/M (which has 2rM

quantization levels in y ∈ [−r, r]) component-wisely to all the elements in Bα ∩Br. From our definition of Bα ∩Br,

we have ∣∣〈Bα ∩ Br〉M ∣∣ =

∣∣∣∣{〈y〉M : y ∈ Rm,
|Spt(y)|
m

≤ α, ‖y‖ ≤ r
}∣∣∣∣

≤
∣∣∣∣{〈y〉M :

|Spt(y)|
m

≤ α, y ∈ [−r, r]m
}∣∣∣∣

(a)

≤
bαmc∑
i=0

(
m

i

)
(2rM)i|Qf |m−i

≤
bαmc∑
i=0

(
m

i

)
(2rM)bαmc|Qf |m−bαmc for M > |Qf |/(2r)

≤ 2m(2rM)bαmc|Qf |m−bαmc,

(42)

where Qf
∆
= {y : f−1(y) contains an interval}, and we assumed |Qf | <∞. Here are the detailed derivations for

step (a). Denote

C :=

{
〈y〉M :

|Spt(y)|
m

≤ α, y ∈ [−r, r]m
}

=

bαmc⋃
i=0

⋃
S⊆{1,...,m},|S|=i

Bi,S

where

Ci,S :=
{
〈y〉M : ySc ∈ Q|S

c|
f , y ∈ [−r, r]m

}
, |S| = i.

In the above display, ySc denotes the vector formed by the entries of y in the index set Sc (complement of S). Now,

consider an arbitrary element z ∈ Ci,S . Recall that 〈·〉M denotes a quantization operation and the total number of

possible quantized values in the interval [−r, r] is 2rM . Hence, for any j ∈ [m], zj can take at most 2rM different

values, due to the constraint y ∈ [−r, r]m. If j ∈ S, we know additionally that zj ∈ 〈Qf 〉M , which can take at

most |Qf | different values. Hence, the cardinality of Ci,S can be upper bounded as

|Ci,S | ≤ (2rM)|S||Qf |m−|S| = (2rM)i|Qf |m−i. (43)

Hence,

|C| ≤
bαmc∑
i=0

∑
S⊆{1,...,m},|S|=i

|Ci,C | ≤
bαmc∑
i=0

(
m

i

)
(2rM)i|Qf |m−i,

which leads to Step (a) of (42).

As a consequence of (42), we have

lim sup
M→∞

log
∣∣〈Bα ∩ Br〉M ∣∣

logM
≤ bα ·mc ≤ αm.
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Combining all the above arguments yields

α ·m ≥ (1− ε)n,

and hence the claimed lower bound on m/n.

In view of Lemma 16, we can now prove the converse result in Theorem 1.

C. Proof of Theorem 1

Our proof relies on the following lemma, whose proof is postponed in Section B-D.

Lemma 17. Let z ∆
= Ax. Under Assumptions (A.1)-(A.3), the following holds almost surely as m,n → ∞ and

m/n→ δ ∈ (1,∞):
1

m

m∑
i=1

I (zi ≤ t)
a.s.−→ Φ(t), ∀t ∈ R. (44)

From Lemma 17, as m,n → ∞ with m,n → δ ∈ (1,∞), the empirical distribution of z = Ax converges to

standard Gaussian in probability
1

m

m∑
i=1

I (zi ≤ t)
P→ Φ(t), ∀t ∈ R.

Consequently,
|{i = 1, . . . ,m : zi ∈ R\f−1(Qf )|

m

P→ 1− P(Z ∈ f−1(Qf )) = d(Y ).

where Z ∼ N (0, 1), Qf
∆
= {y : f−1(y) contains an interval} and the identity 1− P(Z ∈ f−1(Qf )) = d(Y ) is due

to Lemma 1. This is equivalent to (see 38)

|Spt(f(Ax))|
m

=
|Spt(f(z))|

m
=
|{i = 1, . . . ,m : zi ∈ R\f−1(Qf )|

m

P→ d(Y ). (45)

Hence, for any κ > 0,

lim
n→∞

P
{∣∣∣∣ |Spt(f(Ax))|

m
− d(Y )

∣∣∣∣ < κ

}
= 1.

It is understood that in the above limit m and n tend to infinity with m/n→ δ. In view of the definition of Aα in

(39), we have

lim
n→∞

P {x ∈ Aα} = 1, for α = d(Y ) + κ.

Hence, for any ε > 0 and α = d(Y ) + κ, there exists sufficiently large n,m such that

P {x ∈ Aα} ≥ 1− ε

3
.

Further, since limr→∞ P {x ∈ Aα ∩ Ar} = P {x ∈ Aα}, there exists sufficiently large r such that

P {x ∈ Aα ∩ Ar} ≥ P {x ∈ Aα} −
ε

3
≥ 1− 2ε

3
. (46)

Suppose that the decoding error probability does not exceed ε/3, namely,

P{x ∈ A} ≥ 1− ε

3
. (47)
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For α = d(Y ) + κ, and sufficiently large r and m,n, we have

P {x ∈ A ∩Aα ∩ Ar} ≥ P {x ∈ A}+ P {x ∈ Aα ∩ Ar} − 1

≥ 1− ε,

where the second step is form (46). Now, using Lemma 16, we must have

m

n
≥ 1− ε/3

α
=

1− ε/3
d(Y ) + κ

.

Since κ > 0 is arbitrary, m/n ≥ 1−ε/3
d(Y ) . Hence, a necessary condition for achieving vanishing decoding error as

m,n→∞ with m/n→ δ is

δ ≥ 1

d(Y )
.

This finishes the proof of Theorem 1.

D. Proof of Lemma 17

Let the SVD of A be A = UΣV T, where U ∈ Rm×m, Σ ∈ Rm×n and V ∈ Rn×n. By rotational invariance of

U and independence between U and ΣV Tx,

Ax = UΣV Tx

d
= ‖ΣV Tx‖ ·Ue1

= ‖ΣV Tx‖ · u1

d
=
‖ΣV Tx‖
‖g1‖

· g1, g1 ∼ N (0, Im),

where u1 denotes the first column of U and d
= means that the random vectors on the left and right hand sides have

the same distribution. To show the desired weak convergence, it suffices to prove

α
∆
=
‖ΣV Tx‖
‖g1‖

a.s.−→ 1.

To see this, we note that weak convergence is equivalent to convergence under bounded Lipschitz continuous test

function φ [66, Lemma 2.2]:

1

m

m∑
j=1

φ(α · g1j)
a.s.−→ E[φ(G1)], G1 ∼ N (0, 1).

On the other hand,∣∣∣∣∣∣ 1

m

m∑
j=1

φ(α · g1j)− E[φ(G1)]

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

m

m∑
j=1

φ(α · g1j)−
1

m

m∑
j=1

φ(g1j) +
1

m

m∑
j=1

φ(g1j)− E[φ(G1)]

∣∣∣∣∣∣
≤ 1

m

m∑
j=1

|φ(α · g1j)− φ(g1j)|+

∣∣∣∣∣∣ 1

m

m∑
j=1

|φ(g1j)− E[φ(G1)]

∣∣∣∣∣∣
≤ Llip|α− 1| · 1

m

m∑
j=1

|g1j |+

∣∣∣∣∣∣ 1

m

m∑
j=1

|φ(g1j)− E[φ(G1)]

∣∣∣∣∣∣
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where the last step follows from the Lipschitz continuity of φ and Llip denotes the Lipschitz constant. Clearly, the

desired convergence holds if α a.s.−→ 1.

From the above discussions, we just need to prove

α :=
‖ΣV Tx‖
‖g1‖

a.s.−→ 1.

Since V is Haar distributed, we have V Tx
d
= ‖x‖/‖g2‖ · g2 where g2 ∼ N (0, In). Hence,

‖ΣV Tx‖
‖g1‖

d
=

‖x‖
‖g1‖‖g2‖

· ‖Σg2‖.

As x ∈ Rn, g1 ∈ Rm and g2 ∈ Rn all have i.i.d. entries with unit variance,
√
m‖x‖/(‖g1‖‖g2‖)

a.s.−→ 1. Hence, it

remains to prove m−1/2‖Σg2‖
a.s.−→ 1. To this end, we shall prove

1

n

n∑
i=1

σ2
i · g2

1i =
1

n

n∑
i=1

λi · g2
1i

a.s.−→ δ, (48)

which, together with the continuous mapping theorem, implies the desired result.

Similar to [39, Corollary 1], we use Lyons’ strong law of large numbers [67] to prove (48). We first show that

the following holds conditional on {λi}:

lim
n→∞

1

n

n∑
i=1

λi · g2
1i −

1

n

n∑
i=1

λi
a.s.−→ 0. (49)

From [67, Theorem 6], it suffices to verify

∞∑
n=1

1

n2

√√√√Var
( n∑
i=1

λig2
1i

)
<∞. (50)

Since {g1i} are i.i.d. standard Gaussian,

Var
( n∑
i=1

λig
2
1i

)
=

n∑
i=1

Var(λig2
1i) = 2

n∑
i=1

λ2
i .

We have assumed 1
n

∑n
i=1 λ

2
i
a.s.−→ E[Λ2] <∞. Hence, for any C > E[Λ2], the following holds for all sufficiently

large n

Var
( n∑
i=1

λig
2
1i

)
< 2nC.

Hence, (50) is satisfied and so (49) holds. On the other hand, from Assumption (A.2), weak convergence together

with 1
n

∑n
i=1 λ

2
i
a.s.−→ E[Λ2] implies convergence in Wasserstein distance of order two [36]. This further implies

convergence in Wasserstein distance of order one [36], and so 1
n

∑n
i=1 λi

a.s.−→ E[Λ] = δ. Putting things together

proves (48).

APPENDIX C

PROOF OF THEOREM 2

We begin with an auxiliary lemma and then provide the main proof in Section C-B.
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A. An auxiliary lemma

Lemma 18. Let a be the first row of A, and z = (Ax)1, y = f(z + w), where w ∼ N (0, σ2
w) and w ‚ (A,x).

We have

lim sup
σw→0

I(z; y|a)

log(σ−2
w )
≤ 1− E

[
P{za ∈ f−1(Qf )}

]
,

where za ∼ N (0, ‖a‖2).

Proof: We use za to denote a random variable with distribution Pz|a, ya = f(za + w) and za ‚ w. Note that

z = aTx, and so za ∼ N (0, ‖a‖2). Then, by the reverse Fatou lemma, we have

lim sup
σw→0

I(z; y|a)
1
2 log σ−2

w

= lim sup
σw→0

E

[
I(za; ya)
1
2 log σ−2

w

]
≤ E

[
lim sup
σw→0

I(za; ya)
1
2 log σ−2

w

]
.

In what follows, we prove

lim sup
σw→0

I(za; ya)
1
2 log σ−2

w

≤ P{za ∈ R\Qf}, (51)

where za ∈ N (0, ‖a‖2). For convenience, define

pa
∆
= za + w. (52)

Using this notation, ya = f(pa). We introduce an auxiliary random variable

Q
∆
= I(pa ∈ f−1(Qf )).

Then,

I(za; f(za + w)) ≤ I(za; f(za + w), Q)

= I(za;Q) + I(za; f(za + w)|Q)

= I(za;Q) + P{Q = 1} · I(za; f(za + w)|Q = 1) + P{Q = 0} · I(za; f(za + w)|Q = 0)

≤ 1 + log(|Qf |) + P{Q = 0} · I(za; f(za + w)|Q = 0)

(53)

where the last inequality follows from the fact that I(za;Q) ≤ 1 for the binary random variable Q, and I(za; f(za +

w)|Q = 1) ≤ log(|Qf |) since f(za + w) takes at most |Qf | different values conditional on Q = 1.

Since za ∈ N (0, ‖a‖2) and w ∼ N (0, σ2
w), we can represent pa = za + w as

za
d
=

‖a‖2

‖a‖2 + σ2
w︸ ︷︷ ︸

α

·pa +

√
‖a‖2σ2

w

‖a‖2 + σ2
w︸ ︷︷ ︸

β

·N

where N is standard Gaussian and independent of pa. Hence, N is still independent of pa conditioned on Q = 0.

Hence, the conditional distribution of (za, pa) is characterized by

z̃a = α · p̃a + βN,
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where p̃a ∼ Ppa|Q=0 = Ppa|pa∈R\f−1(Qf ). Since f(p̃a) → p̃a → za forms a Markov chain, by data processing

inequality, we have

I(za; f(za + w)|Q = 0) = I(z̃a; f(p̃a)) ≤ I(z̃a; p̃a)

=
1

2
log

(
1 +

α2

β2
E[p̃2

a]

)
=

1

2
log

(
1 +

‖a‖2

‖a‖2 + σ2
w

E[p̃2
a]

σ2
w

)
.

It is easy to show that E[p̃2
a] converges to a positive constant as σw → 0, and

lim sup
σw→0

I(za; f(za + w)|Q = 0)
1
2 log(σ−2

w )
≤ 1, (54a)

and

lim
σw→0

P{Q = 0} = P{za ∈ R\Qf}. (54b)

Combining (53) and (54) proves Lemma 18.

B. Main proof for Theorem 2

The proof is analogous to [50, Theorem 9]. Notice that we assumed x ∼ N (0, I) in Theorem 2.

Let RX(D) be the rate distortion functions of PX with mean square error distortion:

RX(D) = inf
E[d(X,Ŝ)]≤D,X∼PX

I(X; Ŝ),

where d(X, Ŝ) := (X − Ŝ)2, I(X; Ŝ) denotes the mutual information between X and Ŝ, and the infimum in the

above definition is over the transition probability PŜ|X subject to average distortion constraint. Notice that RX(D)

can be equivalently defined as [68, Theorem 9.6.1]

RX(D) = inf
E[dn(x,ŝ)]≤D,{xi}i.i.d.∼ PX

1

n
I(x; ŝ),

where dn(x, ŝ) := 1
n

∑n
i=1(xi − ŝi)2.

Consider the MMSE estimator x̂ = E[x|y,A] with mean square distortion

Dn(σw)
∆
=

1

n
mmse(x|y,A) =

1

n

n∑
i=1

E(xi − x̂i)2,

where the expectation is over the joint distribution of x and x̂. In what follows, we will sometimes write Dn(σw)

as Dn for notational convenience. By the definition of rate distortion functions,

n ·RX(Dn) ≤ I(x, x̂). (55)

Denote by I(x̂;A,x) the mutual information between x̂ and (A,x). We have

I(x; x̂) ≤ I(x;A, x̂)

= I(x;A)︸ ︷︷ ︸
0

+I(x; x̂|A).

Hence,

n ·RX(Dn) ≤ I(x; x̂|A). (56)
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Denote z
∆
= Ax and y = f(z + w). For every realization of A, we have the following Markov chain:

x→ zA → yA → x̂A,

where the subscript “A” is added to emphasize the fact that A is fixed. From data processing inequality [68, Theorem

4.3.3], we have I(x; x̂A) ≤ I (zA;yA). Further averaging over A yields

I(x; x̂|A) ≤ I (z;y|A)

≤
m∑
i=1

I(zi; yi|A)

=

m∑
i=1

I(zi; yi|ai)

= m · I(z; y|a),

(57)

where ai denotes the i-th row of A, the second inequality follows from [68, Eq. (7.2.19)] (note that {yi} are

conditionally independent given z), and in the last inequality we dropped the subscripts as the joint distributions of

{(zi,yi,ai)} are identical due to the rotationally-invariance of A. Combining (56) and (57) gives us the following

lower bound on m/n:
m

n
≥ RX(Dn)

I(z; y|a)
. (58)

Now, suppose that

M∗(X, f,Λ, δ) = sup
σw

lim sup
n→∞

1
nmmse(x|y,A)

σ2
w

<∞.

Then, there exits C > 0 such that the following holds for sufficiently large n

Dn =
1

n
mmse(x|y,A) ≤ C · σ2

w, ∀σw > 0.

The following arguments are similar to the proof of [50, Theorem 9]. Let R−1
X be the inverse function of RX . (Since

RX is a monotonically decreasing function, its inverse exists.) We have

RX(Dn) ≥ RX(C · σ2
w), ∀σw > 0.

Hence, the following holds for any σw > 0,

n

m
≤ I(z; y|a)

RX(C · σ2
w)

=
I(z; y|a)

1
2 log 1

C·σ2
w

·
1
2 log 1

C·σ2
w

RX(C · σ2
w)
.

(59)

When X ∼ N (0, 1), we have [49]

lim
σw→0

RX(C · σ2
w)

1
2 log 1

C·σ2
w

= 1. (60)

Further, from Lemma 18, we have

lim sup
σw→0

I(z; y|a)
1
2 log 1

C·σ2
w

≤ 1− Ea[P{za ∈ f−1(Qf )}], (61)

where za ∼ N (0, ‖a‖2), and a has the same distribution as the first row of A. Note that the proof of Lemma 17

shows that ‖As‖ a.s.→ 1 as m,n→∞ with m/n→ δ, whenever ‖s‖ → 1. Hence, ‖a‖ a.s.→ 1 where a is an arbitrary
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row of A. It is easy to show that P{za ∈ f−1(Qf )} is a continuous function of ‖a‖2, and by continuous mapping

theorem we have P{za ∈ f−1(Qf )} a.s.→ P{Z ∈ Qf} where Z ∼ N (0, 1). Then by dominated convergence theorem,

the following holds as m,n→∞ with m/n→ δ,

Ea[P{za ∈ f−1(Qf )}]→ P{Z ∈ Qf}. (62)

Combining (59)-(62) yields our desired result and concludes the proof of Theorem 2.

APPENDIX D

PROOF OF LEMMA 2

We use the smoothing argument of [69, Theorem 1]. Roughly speaking, we construct a sequence of smoothed

functions η̃z (indexed by ξ,M, σ; see (65)), and show that the performance of the corresponding GLM-EP-app

algorithm tends to the predicted performance of GLM-EP as ξ,M, σ approaches a certain limit. This implies the

performance of GLM-EP-app could be made arbitrarily close to the predicted one with proper choice of ξ,M, σ.

Remark 3. We emphasize that the GLM-EP-app algorithm is introduced mainly for performance analysis purposes.

In practice, GLM-EP is preferable. Our simulations suggest that the asymptotic prediction is accurate even for the

original GLM-EP under wide choices of f (including the quantization function).

As many steps of the proof are the same as [69, Theorem 1], we only sketch the main idea here.

A. Constructions of η̃z and Ct

For brevity, we omitted the argument v in the notation ηz(zr, y, v) throughout this section. Let Qf
∆
= {yq : 1 ≤

q ≤ Q} (where Q <∞) be the set for which f−1 contains an interval. Let ξ < 1
2 min {|yp− yq|, p 6= q} and define

ηξz(zr, y)
∆
=


ηq(zr) for zr ∈ R, y ∈ (yq − ξ, yq + ξ),∀q = 1, . . . , Q

ηz(zr, y) for zr ∈ R, y ∈ Y\
⋃Q
q=1(yq − ξ, yq + ξ)

0 for zr ∈ R, y ∈ R\Y

(63a)

where we denoted

ηq(zr)
∆
= ηz(zr, yq). (63b)

Here, we extended the definition of ηz at the isolated points {y1, . . . , yQ} to their neighborhoods. This treatment

ensures ηξz(zr, y) to be continuous at (zr, yq), which is a useful property for our analysis. We apply an additional

truncation to ηξz(zr, y) (where M > max{|y1|, . . . , |yQ|}):

ηξ,Mz (zr, y)
∆
= ηξz(zr, y) · I[−M,M ]2(zr, y), (64)
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where I[−M,M ]2(zr, y) is an indicator function that equals one when (zr, y) ∈ [−M,M ]2 and zero elsewhere. Finally,

we smooth ηξ,Mz (zr, y) by convolving it with a Gaussian kernel7:

ησ,ξ,Mz (zr, y)
∆
= ηξ,Mz (zr, y) ? φσ(zr, y)

=

∫∫
R2

ηξ,M (s, t) · 1

2πσ2
exp

(
− (s− zr)2 + (t− y)2

2σ2

)
dsdt

(65)

Some useful properties of ησ,ξ,Mz (zr, y) and ηz are given in Section D-B (see Lemma 19 and Lemma 20).

In the GLM-EP-app algorithm (see (8)), the function η̃z and the constant Ct are given by

η̃z(zr, y, vr) = ησ,ξ,Mz (zr, y, vr), (66a)

and

Ct =
1

1− E
[
η′z(Z

t−1
r , Y, V −1

r )
] (66b)

where the expectation in (66b) are taken with respect to Zt−1
r ∼ N (0, 1 − V t−1

r ), Z = Zr + N (0, V t−1
r ) and

Y = f(Z). Notice that Ct depends on the the original function ηz , not the smoothed and truncated function ησ,ξ,Mz .

This choice is for the purpose of simplifying our analysis.

Before we move to the proof sketch in Section D-C, we present some auxiliary results in the next section.

B. Auxiliary results

Lemma 19. Let vr, ξ,M, σ > 0. The following hold

(P.1) ηξz(zr, y) is continuous a.e. with respect to the Lebesgue measure. Further, ηξ,Mz (zr, y) is a.e. bounded;

(P.2) ησ,ξ,Mz (zr, y) is Lipschitz continuous and bounded on R2;

(P.3) limσ→0 η
σ,ξ,M
z (zr, y) = ηξ,Mz (zr, y) whenever ηξ,Mz is continuous at (zr, y).

Proof: Proof of (P.1): We note that ηq(zr) (q = 1, . . . , Q) is a continuous function of zr ∈ R:

ηq(zr)
∆
= ηz(zr, yq) =

∫
f−1(yq)

u · N (u; zr, vr)du∫
f−1(yq)

N (u; zr, vr)du
.

By definition of yq, f−1(yq) contains an interval (could be union of intervals), and it is straightforward to show

that ηq(zr) is continuous on R.

When y ∈ Y\Qf , f−1(y) is a finite set and we have (see (6f))

ηz(zr, y) =

∑
ui∈f−1(y) ui · N (ui; zr, v)∑
ui∈f−1(y)N (ui; zr, v)

.

By the piecewise smooth assumption of f , it can be shown that Y\Qf can be further decomposed into several

non-overlapping intervals, denoted as Y\Qf =
⋃J
j=1 Yj (where J < ∞), such that ηz(zr, y) is continuous on

R×Yj , ∀j. This is due to the fact that each point of f−1(y) is a continuous function of y for y ∈ Yj . Specifically,

it is possible to write f−1(y) as

f−1(y) = {F 1
j (y), . . . , F

Kj
j (y)}, ∀y ∈ Yj ,

7The smoothing parameter σ should not be confused with σw , which denotes the noise variance in Section II-C.
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where Kj <∞, and each F kj (y) is a continuous function of y (by piecewise continuity of f ). Hence,

ηz(zr, y) =

∑Kj
k=1 F

k
j (y) · N (F kj (y); zr, v)∑Kj

k=1N (F kj (y); zr, v)
, ∀(zr, y) ∈ R× Yj ,

and it is continuous on the interior of R× Yj . As an example, consider f given in (15) (see illustration on the left

panel of Figure 1). In this case,

f−1(y) =

{−y − 1, y + 1}, for y > 1

{−y − 1, y + 1,−y, y}, for 0 ≤ y ≤ 1

It can be shown that ηz(zr, y) is continuous on R× (1,∞) and R× (0, 1).

The claimed a.e. continuity of ηξz (see definition in (63a)) follows from the above properties of ηz(zr, y).

Since ηξz(zr, y) is continuous almost everywhere (with respect to the Lebesgue measure), ηξ,Mz (zr, y) = ηξ(zr, y) ·

I[−M,M ]2(zr, y) is bounded almost everywhere. Let M ′ <∞ denote this a.e. bound of |ηξ,Mz |. Then, the smoothed

function |ησ,ξ,Mz (zr, y)| is upper bounded by M ′ on R2.

Proof of (P.2): With slight abuse of notations, let φσ(s, t) denote the bivariate and univariate Gaussian pdf

functions respectively. Namely, φσ(s, t) = φσ(s)φh(t), where φσ(s) := 1√
2πσ2

exp(−s2/(2σ2)). To prove Lipschitz

continuity, note that

|ησ,ξ,Mz (z1, y1)− ησ,ξ,Mz (z2, y2)|

≤
∫∫

ηξ,Mz (s, t) |φσ(z1 − s)φσ(y1 − t)− φσ(z2 − s)φσ(y2 − t)| dsdt

≤ 8M ′M2‖φσ‖∞‖φ′σ‖∞ · ‖(y1, z1)− (y2, z2)‖,

where we used

|φσ(z1 − s)φσ(y1 − t)− φσ(z2 − s)φσ(y2 − t)|

≤ ‖φσ‖∞ · (|φσ(y1 − t)− φσ(y2 − t)|+ |φσ(z1 − t)− φσ(z2 − t)|)

≤ ‖φσ‖∞‖φ′σ‖∞ · (|y1 − y2|+ |z1 − z2|) (mean value theorem)

≤ 2‖φσ‖∞‖φ′σ‖∞ · ‖(y1, z1)− (y2, z2)‖.

Hence, the function ησ,ξ,M is Lipschitz continuous. The boundedness of ησ,ξ,Mz follows from the fact that ηξ,Mz is

a.e. bounded (P.1), and the Gaussian convolution kernel is absolutely continuous w.r.t the Lebesgue measure.

Proof of (P.3): Let (z0, y0) be a point at which ηξ,M is continuous. Since ηξ,M is bounded almost everywhere,

we could apply DCT to get

lim
σ→0

ησ,ξ,M (z0, y0) = lim
σ→0

∫∫
R2

ηξ,M (z0 + s, y0 + t) · 1

2πσ2
exp

(
−s

2 + t2

2σ2

)
dsdt

= lim
σ→0

∫∫
R2

ηξ,M (z0 + σs, y0 + σt) · 1

2π
exp

(
−s

2 + t2

2

)
dsdt

=

∫∫
R2

lim
σ→0

ηξ,M (z0 + σs, y0 + σt) · 1

2π
exp

(
−s

2 + t2

2

)
dsdt

Since ηξ,M is continuous at (z0, y0), we have

lim
σ→0

ηξ,M (z0 + σs, y0 + σt) = ηξ,M (z0, y0), ∀(s, t) ∈ R2.
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Combining the two steps completes the proof.

Lemma 20. Let vr > 0. There exists a constant C > 0 such that

ηz(zr, f(z), vr) < C · (1 + ‖(zr, z)‖) , ∀(zr, z) ∈ R2. (67)

Proof: We differentiate between two cases: f(z) ∈ Qf and f(z) ∈ Y\Qf , where Qf = {y1, . . . , yQ} correspond

to the flat sections of f .

Case 1: f(z) ∈ Qf . Assume f(z) = yi and denote Ii
∆
= f−1(yi). In what follows, we will prove

ηz(zr, yi, vr) =

∫
Ii u · N (u; zr, vr)du∫
Ii N (u; zr, vr)du

< Ci · (1 + |zr|) , ∀zr ∈ R.

Suppose Ii can be written as Ii =
⋃K
k=1(ak, bk), where ak could be −∞ and bk could be ∞ (we do not index

ak, bk by i to simplify notation.) Then,

ηz(zr, yi, vr) =

∫
Ii u · N (u; zr, vr)du∫
Ii N (u; zr, vr)du

=

K∑
k=1

 ∫
(ak,bk)

u · N (u; zr, vr)du∑K
j=1

∫
(aj ,bj)

N (u; zr, vr)du


We have

|ηz(zr, yi, vr)| ≤
K∑
k=1


∣∣∣∫(ak,bk)

u · N (u; zr, vr)du
∣∣∣∑K

j=1

∫
(aj ,bj)

N (u; zr, vr)du


≤

K∑
k=1


∣∣∣∫(ak,bk)

u · N (u; zr, vr)du
∣∣∣∫

(ak,bk)
N (u; zr, vr)du


(68)

We bound the terms inside the summation seperately. First, assume both ak and bk are finite. Then,∣∣∣∫(ak,bk)
u · N (u; zr, vr)du

∣∣∣∫
(ak,bk)

N (u; zr, vr)du
=

∣∣∣∫(ak,bk)
u · N (u; zr, vr)du

∣∣∣∫
(ak,bk)

N (u; zr, vr)du

=

∣∣∣∣∣zr +

∫
(ak,bk)−zr t · N (t; 0, vr)dt∫

(ak,bk)−zr N (t; 0, vr)dt

∣∣∣∣∣
≤ |zr|+ max{|ak − zr|, |bk − zr|}

≤ C ′(1 + |zr|)

Now, suppose ak = −∞. (The argument is similar for the case bk =∞.) We have∣∣∣∣∣
∫

(−∞,bk−zr)
t · N (t; 0, vr)dt∫

(−∞,bk−zr)
N (t; 0, vr)dt

∣∣∣∣∣ =

∣∣∣∣∣∣√vr
φ1

(
bk−zr√
vr

)
Φ1

(
bk−zr√
vr

)
∣∣∣∣∣∣ ≤ C ′′(1 + |zr|)

where φ1 and Φ1 denote the pdf and cdf functions of standard Gaussian distribution, respectively, and the last step

is from mean value theorem together with the following elementary result∣∣∣∣∣
(
φ1(x)

Φ1(x)

)′∣∣∣∣∣ ≤ 1, ∀x ∈ R.
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Case 2: f(z) ∈ Y\Qf . In this case, f−1(f(z)) is a finite set, and

ηz(zr, f(z), vr) =

∑
ui∈f−1(f(z)) ui · exp (−Ei)∑
ui∈f−1(f(z)) exp (−Ei)

, Ei
∆
=

(ui − zr)2

2vr
(69)

Hence,

|ηz(zr, f(z), vr)| ≤
∑
ui∈f−1(f(z)) |ui| · exp (−Ei)∑

ui∈f−1(f(z)) exp (−Ei)

≤
∑

ui∈f−1(f(z))

|ui| · exp (−Ei + Emin) ,
(70)

where

Emin = min {Ej} (71)

From the piecewise assumption of f , we have that |f−1(f(z))| < K for all f(z) ∈ Y\Qf . It suffices to prove the

following for 1 ≤ i ≤ |f−1(f(z))|:

|ui| · exp (−Ei + Emin) < C (1 + ‖(z, zr)‖) ∀(z, zr) ∈ R2.

Denote

ti
∆
= exp (−Ei + Emin) = exp

(
− (ui − zr)2

2vr
+ Emin

)
.

(As Ei ≥ Emin, we have 0 < ti ≤ 1.) From this definition,

|ui − zr| =

√
2vr ·

(
Emin + log

1

ti

)
.

Hence,

|ui| ≤ |zr|+

√
2vr ·

(
Emin + log

1

ti

)
.

Then,

|ui| · exp (−Ei + Emin) = |ui| · ti

≤ |zr| · ti +

√
2vr ·

(
t2i · Emin + t2i · log

1

ti

)
(a)

≤ |zr| · ti +

√
2vr ·

(
t2i ·

(z − zr)2

2vr
+ t2i · log

1

ti

)
(b)

≤ |zr|+
√

(z − zr)2 + 0.4vr

< C · (1 + ‖(z, zr)‖) ,

where step (a) is from the definition of Emin and the fact that z ∈ f−1(f(z))), and step (b) is due to 0 < ti ≤ 1

and t2i log(1/ti) < 0.2.
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C. Proof sketch for Lemma 2

Our proof for Lemma 2 follows the approach proposed in [69, Theorem 1]. As many steps are similar to Lemma

2, we will not provide the full details of the proof, and only sketch the main idea. The proof has two main steps:

(Step 1) The smoothed function ησ,ξ,Mz is Lipschitz continuous, so the asymptotic MSE of GLM-EP-app could be

characterized by a state evolution (SE) recursion;

(Step 2) Using the SE platform, we show that the asymptotic MSE of GLM-EP-app converges to the (expected) MSE

of GLM-EP, as σ → 0, and ξ → 0,M →∞ sequentially. This implies that, with proper choice of σ, ξ,M , the

asymptotic performance of GLM-EP-app is arbitrarily close to that of GLM-EP.

Step 1 is a consequence of [41, Theorem 1]. Note that the model considered in this paper is a special case of that

adopted in [41, Theorem 1]. Also, here we assumed f to be Lipschitz continuous, as required by [41, Theorem 1].

The crucial assumption of [41, Theorem 1] is the Lipschitz continuity of ησ,ξ,Mz , which we prove in Lemma 19 (see

Section D-B).

A caveat is that [41, Theorem 1] assumes ησ,ξ,Mz (zr, y, vr) to be uniform Lipschitz (see definition in [41]) w.r.t. to

(zr, y) and vr. However, since GLM-EP-app uses the deterministic sequences {V tr , V tl }t≥0 instead of their empirical

counterparts {vtr, vtl}, this additional uniform continuity assumption is not required here.

Step 2 follows the same argument as in [69, Theorem 1]. First, the state evolution of GLM-EP-app is slightly

more complicated than that of GLM-EP, and involve four sequences {αtl , τ tl , αtr, τ tr}t≥0. (The SE of GLM-EP can

be viewed as a special case of this more general SE.) Note that these sequences all depend on the parameters

σ, ξ,M , but to keep notation light we do not make such dependency explicit. Intuitively speaking, (αtl , τ
t
l ) describes

the correlation matrix of the components of (z, ztl ) (where z
∆
= Ax):

Cov(Z,Ztl )
∆
=

 E[Z2] E[ZZtl ]

E[ZZtl ] E[(Ztl )
2]

 =

 1 αtl

αtl τ tl

 .
Similarly, (αtr, τ

t
r) describes the correlation of the components of (z, ztr)

The SE describing the recursive relationship of {αtl , τ tl , αtr, τ tr}t≥0 is given by

αtl = φσ,ξ,M1 (αtr, σ
t
r), and τ tl = φσ,ξ,M2 (αtr, σ

t
r),

αtr = Φ1(αtr, σ
t
r), and τ tr = Φ2(αtr, σ

t
r),

where GLM-EP and GLM-EP-app start from the same initializations, i.e., α−1
r = τ−1

r = V −1
r . A formal definition

of these functions may be found in, e.g., [41].

Our goal is to show that the limit of the covariance Cov(Z,Ztl ) for GLM-EP and GLM-EP-app for all t ≥ 0.

Note that if Cov(Z,Ztl ) for GLM-EP and GLM-EP-app are the same, then Cov(Z,Ztr) would also be the same, as

the second steps of the two algorithms are identical (cf. (6) and (8b)).
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As in [69, Theorem 1], the argument proceeds inductively on t. Because the steps are straightforward, we do not

provide the full details and only consider the first iteration. Basically, we need to prove the following:

lim
ξ→0,M→∞

lim
σ→0

E[Z · ησ,ξ,Mz (Zr, Y )] = E[Z · ηz(Zr, Y )] (72a)

lim
ξ→0,M→∞

lim
σ→0

E[Zr · ησ,ξ,Mz (Zr, Y )] = E[Zr · ηz(Zr, Y )] (72b)

lim
ξ→0,M→∞

lim
σ→0

E[
(
ησ,ξ,Mz (Zr, Y )

)2
] = E[(ηz(Zr, Y ))

2
] (72c)

where Z ∼ N (0, 1), Y = f(Z). Note that these results hold for any Zr as long as it is joint Gaussian with Z

(non-degenerate).

We next prove (72a). Other results can be proved in the same way. We first calculate its limit of E[Z ·ησ,ξ,Mz (Zr, Y )]

as σ → 0. From Lemma 19, the function ησ,ξ,Mz is bounded, and using dominated convergence theorem we get

lim
σ→0

E[Z · ησ,ξ,Mz (Zr, Y )] = E
[
Z · lim

σ→0
ησ,ξ,Mz (Zr, Y )

]
= E

[
Z · ηξ,Mz (Zr, Y )

]
,

where the last step follows from

lim
σ→0

ησ,ξ,Mz (Zr, Y ) = ηξ,Mz (Zr, Y ) a.s. (73)

To see (73), note that Lemma 19 shows limσ→0 η
σ,ξ,M
z (zr, y) = ηξ,Mz (zr, y) whenever ηξ,Mz is continuous at (zr, y).

In particular, our construction of ηξ,Mz (see (63a)) guarantees that ηξ,Mz is continuous at (zr, y) ∈ R×{y1, . . . , yQ}.

Similar to the proof of Lemma 19-(P.1), it can be shown that the set of points at which ηξ,Mz is discontinuous has

zero probability (with respect to the distribution of (Zr, Y )).

It remains to prove

lim
ξ→0,M→∞

E
[
Z · (ηξ,Mz (Zr, Y )− ηz(Zr, Y ))

]
= 0.

Similar to 19-(P.1), it can be shown that ηξ,Mz (Zr, Y ) is almost surely bounded w.r.t, the distribution of Zr, Y . Also,

by Lemma 20, ηz(Zr, Y ) = ηz(Zr, f(Z)) ≤ C · (1 + ‖(Zr, Z)‖). Hence, we could apply DCT to show

lim
ξ→0,M→∞

E
[
Z · (ηξ,Mz (Zr, Y )− ηz(Zr, Y ))

]
= E

[
lim

ξ→0,M→∞
Z · (ηξ,Mz (Zr, Y )− ηz(Zr, Y ))

]
= 0.

APPENDIX E

PROOFS OF LEMMA 3 AND LEMMA 4

A. Proof of Lemma 3

From (7), the state evolution recursion for Vr reads

V t+1
r = Φ

(
φ(V tr )

)
,
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where V 0
r = 1. Lemma 11 in Appendix A implies that the composite function Φ(φ(Vr))) is continuously increasing

in [0, 1]. Further, Φ(φ(Vr)) ≥ 0 for any Vr ∈ [0, 1]. An induction argument shows that {V tr } monotonically converges

if and only if

Φ(φ(V 1
r )) ≤ V 1

r , (74)

which holds since V 1
r = 1, φ(1) ≥ 0 (see Lemma 11) and Φ(v) ≤ 1 for all v ≥ 0. Further, if φ(1) 6=∞, then the

sequence {V tr } converges to V ?r , where V ?r is the smallest v so that the following holds for all Vr ∈ [v, 1], i.e.,

V ?r = inf
{
v ∈ [0, 1] : Φ (φ(vr)) < vr,∀vr ∈ [v, 1]

}
.

Substituting in the definitions of φ and Φ in (7), it is straightforward to show that the above definition of V ?r is

equivalent to that in (10).

For the degenerate case where φ(1) =∞ (which corresponds to mmsez(1) = 1 and happens when f is an even

function), P (1) = 0 and so V ?r in (10)) is not defined. Lemma 3 holds by defining V ?r = 1 for this degenerate case.

B. Proof of Lemma 4

Throughout this paper, we denote φ(0)
∆
= limvr→0 φ(vr). In our discussions below, we shall exclude two cases

for which the Lemma holds trivially: (1) f is invertible, it is easy to show P (vr) = δ − 1 > 0 and MSE?Λ = 0;

(2) f(Z) is independent of Z (e.g., f(Z) is a constant). Clealry, MSE?Λ = 1. At the same time, mmsez(vr) = vr,

φ(vr) = +∞, and P (vr) = 0 for all vr.

1) Proof of (i): Consider two following cases.

• Case 1: d(Y ) = 0;

• Case 2: d(Y ) > 0.

For Case 1, we next show that the condition (12) does not hold, and further perfect recovery is impossible, i.e.,

MSE?Λ 6= 0. To see this, we consider P (0):

P (0) = E
[

φ(0)

φ(0) + Λ

]
− 1 + δ ·

[
1− lim

vr→0

mmsez(vr)

vr

]
(a)
= E

[
φ(0)

φ(0) + Λ

]
− 1 + δ ·

[
1− lim

vr→0

mmse(Z, v−1
r − 1|Y )

vr

]
= E

[
φ(0)

φ(0) + Λ

]
− 1 + δ ·

[
1− lim

snreff→∞
(snreff + 1) ·mmse(Z, snreff|Y )

]
(snreff := v−1

r − 1)

(b)
= E

[
φ(0)

φ(0) + Λ

]
− 1 + δ · [1−D(Z|Y )]

(c)
= E

[
φ(0)

φ(0) + Λ

]
− 1 + δ · d(Y )

(d)
= E

[
φ(0)

φ(0) + Λ

]
− 1

< 0,

(75)

where step (a) is from the definition of mmsez below (7), and step (b) is from definition of D(Z|Y ) (see Definition

(4)) and the fact that mmsez(0) = 0, step (c) is from Lemma 8, and the last step is from 0 ≤ φ(0) < +∞ (see

Lemma 11).
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By continuity of P , there exists v̂r ∈ (0, 1] such that P (v̂r) ≤ 0, implying that (12) does not hold. Further, from

Lemma 3, limt→∞ V tr = V ?r ≥ v̂r > 0. By the strict monotonicity of φ, φ(V ?r ) > φ(v̂r) > 0. Then, from (7c),

MSE?Λ
∆
= MSEΛ(φ(V ?r )) > 0.

The proof for Case 2 is also straightforward. From Lemma 3, we have the following equivalence:

V ?r
∆
= lim
t→∞

V tr = 0 ⇐⇒ (12) holds.

Furthermore, for Case 2, (12) guarantees φ(0) = 0. On the other hand,

V ?r = 0 and φ(0) = 0 ⇐⇒ MSE?Λ
∆
= MSEΛ(φ(V ?r )) = 0.

This proves the equivalence between (12) and MSE?Λ = 0.

2) Proof of (ii): From (75),

P (0) = E
[

φ(0)

φ(0) + Λ

]
− 1 + δ · d(Y )

=

E
[

φ(0)
φ(0)+Λ

]
− 1 < 0 if d(Y ) = 0

−1 + δ · d(Y ) if d(Y ) 6= 0

where we used the fact that φ(0) = 0 when d(Y ) 6= 0. Overall, if δ < 1/d(Y ), we have P (0) < 0. By continuity

of P , (12) does not hold, which together with part (i) shows that MSE?Λ 6= 0. Hence, δ ≥ 1/d(Y ) is necessary for

achieving MSE?Λ = 0.

Now suppose δ > 1/d(Y ). We next prove there exists a spectrum PΛ such that MSE?Λ = 0. From part (i), this is

equivalent to checking there exists PΛ such that P (vr) > 0 for all vr ∈ (0, 1], which can be rewritten as (from

(11)):

E
[

φ(vr)

φ(vr) + Λ

]
> g(vr), ∀vr ∈ (0, 1]. (76)

We first prove

sup
vr∈(0,1]

g(vr) < 1. (77)

where g(vr) is defined by (see (11))

g(vr)
∆
= 1− δ

(
1− mmsez(vr)

vr

)
.

As shown in (29) (Appendix A), mmsez(vr) ≤ vr for all vr ∈ (0, 1). Further, the inequality is strict when Y := f(Z)

and Z are not independent, which was assumed to hold (see discussions at the start of this appendix). Therefore,

g(vr) < 1, ∀vr ∈ (0, 1).
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Further, when vr = 1, mmsez(1) < 1 (by assumption) and so g(1) < 1. When vr → 0,

g(0)
∆
= lim
vr→0+

g(vr)

= lim
vr→0

1− δ
(

1− mmsez(vr)

vr

)
= 1− δ(1−D(Z|f(Z)))

= 1− δ · d(Y )

< 0,

(78)

where the last equality is due to Lemma 8 and the last inequality is from the assumption δ > 1/d(Y ). Combining

the above facts (together with the continuity of g) proves (77).

We are now in the position to prove (76). Consider the following two-point distribution parameterized by P ∈ (0, 1)

and a ∈ (0, δ):

PΛ =

a with prob. P

δ−aP
1−P with prob. 1− P.

(79)

This distribution satisfies the normalization assumption E[Λ] = δ. Under this distribution, the left-hand side of (76)

becomes

E
[

φ(vr)

φ(vr) + Λ

]
= P · φ(vr)

φ(vr) + a
+ (1− P ) · φ(vr)

φ(vr) + b

(
b

∆
=
δ − aP
1− P

)
> P · φ(vr)

φ(vr) + a
(b > 0).

(80)

We next show that there exists a ∈ (0, δ) and P ∈ (0, 1) for which the following holds,

P · φ(vr)

φ(vr) + a
> g(vr). ∀vr ∈ (0, 1].

Since φ(vr) is non-negative (see Lemma 11), It suffices to prove

a < φ(vr) ·
(

P

g(vr)
− 1

)
, ∀vr ∈ D ∆

= {vr ∈ (0, 1] : g(vr) ≥ 0} . (81)

Consider an arbitrary P ∈ (supv∈D g(v), 1). Due to (77), this choice of P is valid.

Let

amin(P )
∆
= inf
vr∈D

φ(vr) ·
(

P

g(vr)
− 1

)
.

We conclude our proof by showing amin(P ) > 0 for P ∈ (supv∈D g(v), 1), and setting a ∈ (0,min(amin(P ), δ)).

To this end, we note

inf
vr∈D

φ(vr) > 0, (82a)

and

inf
vr∈D

(
P

g(vr)
− 1

)
> 0. (82b)

Eq. (82a) is due to the following facts: (i) φ(vr) > 0 for all vr 6= 0 when f is not invertible (see Lemma 11); and

(ii) D ∆
= {vr ∈ (0, 1] : g(vr) ≥ 0} ⊂ (v̂, 1] for some v̂ > 0. (Since g(0) < 0 and g is continuous.) Eq. (82b) is due

to the definition P ∈ (supv∈D g(v), 1).

This completes the proof.
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APPENDIX F

PROOF OF LEMMA 6

Lemma 3 shows that the MSE of the GLM-EP algorithm is given by

MSE?Λ
∆
= E

[
φ(V ?Λ )

φ(V ?Λ ) + Λ

]
, (83)

where

V ?Λ = inf

{
v ∈ [0, 1] : E

[
φ(vr)

φ(vr) + Λ

]
> g(vr),∀vr ∈ [v, 1]

}
. (84)

Here, the subscript (·)Λ is added to emphasize the dependency on the spectrum PΛ. Since E
[

φ(vr)
φ(vr)+Λ

]
≥ 0, V ?Λ

can be equivalently defined as

V ?Λ = inf

{
v ∈ [0, 1] : E

[
φ(vr)

φ(vr) + Λ

]
> G(vr; δ),∀vr ∈ [v, 1]

}
. (85)

where G(vr; δ) is defined in (14). We next prove that v?Λ must satisfy

MSE?Λ
∆
= E

[
φ(V ?Λ )

φ(V ?Λ ) + Λ

]
= G(V ?Λ ; δ). (86)

Eq. (74) implies E
[

φ(1)
φ(1)+Λ

]
≥ g(1). Further, φ(1) ≥ 0, and thus E

[
φ(1)

φ(1)+Λ

]
≥ 0. Together, we have E

[
φ(1)

φ(1)+Λ

]
≥

G(1; δ). The only possibility (86) does not hold is when

E
[

φ(vr)

φ(vr) + Λ

]
> G(vr; δ) ∀vr ∈ [0, 1]. (87)

We next show that (87) cannot hold. We only need to prove (87) cannot hold for vr = 0. We consider two case

d(Y ) > 0 and d(Y ) = 0 separately. When d(Y ) > 0, Lemma 11 guarantees φ(0) = 0, and thus E
[

φ(0)
φ(0)+Λ

]
= 0 ≤

G(0; δ), where the inequality is from the definition of G(·). When d(Y ) = 0, as shown in (75), we have

lim
vr→0

1− δ ·
[
1− mmsez(vr)

vr

]
= 1− δ [1−D(Z|Y )]

= 1− δ · d(Y )

= 1.

Hence, from (14), we have G(0; δ) = 1. On the other hand, E
[

φ(0)
φ(0)+Λ

]
≤ 1 since φ(0) ≥ 0. Hence, (87) cannot

hold at vr = 0. Combining the previous arguments proves (86).

At this point, we can compare MSE?Λ1
and MSE?Λ2

. Note that C/(C + Λ)−1 is a convex function of Λ for every

C > 0. Hence, Lemma 5 implies that the following holds for all γl > 0:

Λ1 �L Λ2 =⇒ E
[

φ(vr)

φ(vr) + Λ1

]
≥ E

[
φ(vr)

φ(vr) + Λ2

]
, ∀φ(vr) ≥ 0,

where �L means spikier in the Lorenz sense (see Definition 3). From the definition of V ?Λ , we have

Λ1 �L Λ2 =⇒ V ?Λ1
≤ V ?Λ2

. (88)

To compare MSE?Λ1
and MSE?Λ2

, it is not very convenient to directly use (83) since the expectation in (83) itself

depends on the distribution of Λ. Instead, due to (86), we only need to compare G(V ?Λ1
; δ) and G(V ?Λ2

; δ). Since

V ?Λ1
≤ V ?Λ2

, the claims in the lemma follow directly.
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APPENDIX G

PROOF OF THEOREM 3

From Lemma 4, the GLM-EP algorithm cannot achieve perfect recovery at finite δ if d(Y ) = 0. Therefore, we

will only consider the case d(Y ) > 0. In this case, we have φ(0) = 0 (see Lemma 11).

When φ(0) = 0, we have MSE?Λ = 0 if and only if V ?Λ = 0, where V ?Λ is defined in (85). Therefore, we can

equivalently define δalgΛ as

δalgΛ = inf {δ : V ?Λ = 0} . (89)

We have proved in (88) that if Λ1 �L Λ2, then V ?Λ1
≤ V ?Λ2

and hence δalgΛ1
≤ δalgΛ2

(from (89)).

APPENDIX H

PROOF OF LEMMA 7

Throughout this appendix, we assume δ > δalgΛ ≥ 1/d(Y ), where the second inequality is a consequence of the

necessary condition for perfect reconstruction given in Lemma 4.

We first collect some auxiliary lemmas in Section H-A before we present our main proof in Section H-B.

A. Auxiliary Results

We denote

Y = f(Z),

Yσ = f(Z + σwW ),

Uσ = Z + σwW,

Zr = (1− vr)Z +
√
vr(1− vr)N,

R =
√
vrZ −

√
1− vrN,

(90)

where Z,N,W,R are standard Gaussian RVs, and (Z,N,W ) are mutually independent and R ‚ (Zr,W ). (Here,

A‚ B denotes A,B are independent RVs.) Notice that

Z = Zr +
√
vrR.

Lemma 21. Let mmsez(vr, σ
2
w) be the noisy MMSE defined in (32). Define

mmseapp(vr, σ
2
w)

∆
=vrE

((
σ2
wR

vr + σ2
w

−
√
vσwW

vr + σ2
w

)2

I(E1)

)
+ vrE

(
R2I(Ec1)

)
. (91)

where

E1
∆
= {Uσ ∈ R\Qf}, (92)

Uσ = Z + σwN and Ec1 is the complement of E1. Then, the following holds

lim
vr+σ2

w→0

1

vr
·
(
mmsez(vr, σ

2
w)−mmseapp(vr, σ

2
w)
)

= 0. (93)
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Proof: By the definitions of mmsez and mmseapp, we have

1

vr

(
mmsez(vr, σ

2
w)−mmseapp(vr, σ

2
w)
)

= E

[
1

vr
(Z − E[Z|Yσ, Zr])2 −

(
σ2
wR

vr + σ2
w

−
√
vrσwW

vr + σ2
w

)2

I(E1)−R2I(Ec1)

]
.

We bound the term inside the expectation by∣∣∣∣∣ 1

vr
(Z − E[Z|Yσ, Zr])2 −

(
σ2
wR

vr + σ2
w

−
√
vrσwW

vr + σ2
w

)2

I(E1)−R2I(Ec1)

∣∣∣∣∣
(a)
=

∣∣∣∣∣(R− E[R|Yσ, Zr])2 −
(

σ2
wR

vr + σ2
w

−
√
vrσwW

vr + σ2
w

)2

I(E1)−R2I(Ec1)

∣∣∣∣∣
≤2(R2 + E2[R|Yσ, Zr]) +

(
σ2
wR

vr + σ2
w

−
√
vrσwW

vr + σ2
w

)2

I(E1) +R2I(Ec1)

≤2(R2 + E2[R|Yσ, Zr]) + 2

(
R2 +

1

4
W 2

)
+R2

(94)

where step (a) follows from the definition Z = Zr +
√
vrR. Since

E
[
2(R2 + E2[R|Yσ, Zr]) +

(
R2 +

1

4
W 2

)
+R2

]
<∞,

by dominated convergence theorem we have

lim
vr+σ2

w→0

1

vr
mmsez(vr, σ

2
w)−mmseapp(vr, σ

2
w)

= lim
vr+σ2

w→0

1

vr
E
(
Z − E[Z|Yσ, Zr]

)2

−mmseapp(vr, σ
2
w)

= E

[
lim

vr+σ2
w→0

1

vr
(Z − E[Z|Yσ, Zr])2 −

(
σ2
wR

vr + σ2
w

−
√
vσwW

vr + σ2
w

)2

I(E1)−R2I(Ec1)

]

= E[T1] + E[T2],

where

T1
∆
= lim
vr+σ2

w→0

1

vr
(Z − E[Z|Yσ, Zr])2 I(E1)−

(
σ2
wR

vr + σ2
w

−
√
vσwW

vr + σ2
w

)2

I(E1)

T2
∆
= lim
vr+σ2

w→0

1

vr
(Z − E[Z|Yσ, Zr])2 I(Ec1)−R2I(Ec1).

(95)

We next prove E[T1] = 0 and E[T2] = 0 separately.

Analysis of T1: Direct calculations yield

E[Z|Yσ = y, Zr = zr] =

∫
f−1(y)

N (u; zr, vr + σ2
w)

vru+σ2
wzr

vr+σ2
w

du∫
f−1(y)

N (u; zr, vr + σ2
w)du

(96a)

= zr +
vr

vr + σ2
w

∫
I uN (u; 0, vr + σ2

w)du∫
I N (u; 0, vr + σ2

w)du
, (96b)

where N (x;m, v)
∆
= 1√

2πv
exp

(
− (x−m)2

2v

)
, I ∆

= f−1(y)− zr, and the second step is due to a change of variable.

We emphasize that I is indexed by y and zr, but to make notation light we did not make such dependency explicit.

When f−1(y) is a discrete set, the integration is simply replaced by a summation.
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With slight abuse of notations, let (z, w, n, y, zr) be an instance of (Z,W,N, Yσ, Zr). From (90), we have

zr = (1− vr)z +
√
vr(1− vr)n and y = f(z + σww). Then,

1

vr
(z − E[Z|Yσ = y, Zr = zr])

2
=

1

vr

(
z − zr −

vr
vr + σ2

w

∫
I uN (u; 0, vr + σ2

w)du∫
I N (u; 0, vr + σ2

w)du

)2

=
1

vr

(
vrz −

√
vr(1− vr)n−

vr
vr + σ2

w

∫
I uN (u; 0, vr + σ2

w)du∫
I N (u; 0, vr + σ2

w)du

)2

=

(
√
vrz −

√
1− vrn−

√
vr

vr + σ2
w

∫
I uN (u; 0, vr + σ2

w)du∫
I N (u; 0, vr + σ2

w)du

)2

=

(
r −

√
vr

vr + σ2
w

∫
I uN (u; 0, vr + σ2

w)du∫
I N (u; 0, vr + σ2

w)du

)2

,

(97)

where the last step is due to the definition of the r.v. R in (90). Recall that E1 = {Z + σσW ∈ R\Qf}, where

Qf = {z : f−1(f(z)) contains an interval}. Conditioned on E1, f−1(y) is a discrete set, and so is I ∆
= f−1(y)−zr.

Hence, conditioned on E1, the integration in the above formula is replaced by summation over the elements in I.

Since y = f(z + σww), we have z + σww ∈ f−1(y). Further, z = zr +
√
vrr, and thus

z + σww − zr =
√
vrr + σww ∈ f−1(y)− zr = I.

Let E2 be the event that there does not exist x ∈ f−1(y) and x 6= z + σww such that |z + σww| = |x− zr|. Then,

on the event E1 ∩ E2,

lim
vr+σ2

w→0

∫
I uN (u; 0, vr + σ2

w)du∫
I N (u; 0, vr + σ2

w)du
− (
√
vrr + σww) = 0.

This is due to the fact that I is a discrete set and the term with minimum exponent dominates. Hence,

lim
vr+σ2

w→0

√
vr

vr + σ2
w

∫
I uN (u; 0, vr + σ2

w)du∫
I N (u; 0, vr + σ2

w)du
−
√
vr(
√
vrr + σww)

vr + σ2
w

= 0,

Hence, conditioned E1 ∩ E2, we have (see (97))

1

vr
(z − E[Z|Yσ = y, Zr = zr])

2
=

(
r −

√
vr

vr + σ2
w

∫
I uN (u; 0, vr + σ2

w)du∫
I N (u; 0, vr + σ2

w)du

)2

+ o(vr + σ2
w)

=

(
r −
√
vr(
√
vrr + σww)

vr + σ2
w

)2

+ o(vr + σ2
w)

=

(
σ2
wr −

√
vrσww

vr + σ2
w

)2

+ o(vr + σ2
w)

Since P(Ec2) = 0, overall we have

P (T1 = 0) = P
{

lim
vr+σ2

w→0
I(E1) ·

[
1

vr
(Z − E[Z|Yσ, Zr])2 −

( σ2
wR

vr + σ2
w

−
√
vσwW

vr + σ2
w

)2
]

= 0

}
= 1.

Hence, E[T1] = 0.

Analysis of T2: Let (z, n, w, r, y, zr) be an instance of (Z,N,W,R, Yσ, Zr). From (97), we have

1

vr
(z − E[Z|y, zr])2

=

(
√
vrz −

√
1− vrn−

√
vr

vr + σ2
w

∫
I uN (u; 0, vr + σ2

w)du∫
I N (u; 0, vr + σ2

w)du

)2

(98a)

=
(√

vrz −
√

1− vrn−
√
vr

vr + σ2
w

∫
Î uN (u; 0, 1)du∫
Î N (u; 0, 1)du

)2

(98b)
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where Î ∆
= I√

vr+σ2
w

= f−1(y)−zr√
vr+σ2

w

. Let E3 be the event that zr is not on the boundary of f−1(y). Consider the third

term in (98b) under Ec1 ∩ E3. From the definition of Ec1 , Î only consists of intervals. If 0 is an interior point of Î,

we have ∣∣∣∣∫
Î
N (u; 0, 1)du− 1

∣∣∣∣ ≤ ∫
Îc
N (u; 0, 1)du = O

(
e−c/(vr+σ2

w))
)
.

where Îc = R\Î and c > 0 is some constant. Similarly, for the numerator,∣∣∣∣∫
Î
uN (u; 0, 1)du

∣∣∣∣ ≤ ∫
Îc
|u|N (u; 0, 1)du = O

(
e−c/(vr+σ2

w))
)
.

Hence, when 0 is an interior point of Î, we have

lim
vr+σ2

w→0

√
vr

vr + σ2
w

∫
Î uN (u; 0, 1)du∫
Î N (u; 0, 1)du

= 0.

Next, we decompose S ∆
= (z − E[Z|y, zr])2

/vr as

S = S · I
(
0 ∈ (f−1(y)− zr)

)
+ S · I

(
0 /∈ (f−1(y)− zr)

)
.

We note that as vr + σ2
w → 0, we have zr → z. Further, z ∈ f−1(y). Therefore,

lim
vr+σ2

w→0
I
(
0 ∈ (f−1(y)− zr)

)
= 1.

We have shown in (94) that S <∞. Hence,

lim
vr+σ2

w→0

1

vr
(z − E[Z|y, zr])2

= lim
vr+σ2

w→0
S · I

(
0 ∈ (f−1(y)− zr)

)
+ lim
vr+σ2

w→0
S · I

(
0 /∈ (f−1(y)− zr)

)
= lim
vr+σ2

w→0
S · I

(
0 ∈ (f−1(y)− zr)

)
=
(√
vrz −

√
1− vrn

)2
.

Since P(Ec3) = 0, we have

P (T2 = 0) = P
(

lim
vr+σ2

w→0

1

vr
(z − E[Z|y, zr])2 I(E2) =

1

vr

(
vrz −

√
vr(1− vr)n

)2

I(E2)

)
= 1.

Lemma 22. Suppose σ2
w 6= 0 and δ > δalgΛ ≥ 1/d(Y ). Define v� ∆

= inf{v ∈ [0, 1] : g(vr) = 0}. For arbitrary

ε ∈ (0, v�), define

v�ε (σ2
w)

∆
= sup

{
v ∈ (0, ε) : mmsez(vr, σ

2
w) =

(
1− 1

δ

)
vr

}
, (99)

where mmsez(vr, σ
2
w) is defined in (32). Then, the following holds as σ2

w → 0

v�ε (σ2
w) ≤ C(δ, f) · σ2

w, (100)

where 0 < C(δ, f) <∞ is a constant depending on δ and f .

Proof: Our proof is mainly concerned with proving the following upper bound of mmsez(vr, σ
2
w) as vr+σ2

w → 0:

mmsez(vr, σ
2
w) ≤ vr ·D(Z|Y ) + o(vr) + C · σ2

w, (101)
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where C is some constant depending on δ and f . Using this, we can upper bound v�ε (σ2
w) by the solution to the

solution to the following equation:

vr ·D(Z|Y ) + o(vr) + C · σ2
w =

(
1− 1

δ

)
vr. (102)

Namely,

v�ε (σ2
w) ≤ Cσ2

w

1− 1
δ −D(Z|Y )− o(1)

,

which yields the desired result.

The rest of this section is devoted to the proof of (101). Lemma 21 shows that the following holds

lim
vr+σ2

w→0

1

vr

(
mmse(vr, σ

2
w)−mmseapp(vr, σ

2
w)
)

= 0.

As a consequence,

mmsez(vr, σ
2
w) = mmseapp(vr, σ

2
w) + o(1) · vr. (103)

In what follows, we prove that the following holds for all vr ∈ (0, 1)

mmseapp(vr, σ
2
w) = mmseapp(vr, 0) +O(σ2

w). (104)

We first recall that mmseapp is defined as

mmseapp(vr, σ
2
w)

∆
= vrE

((
σ2
wR

vr + σ2
w

−
√
vσwW

vr + σ2
w

)2

I(E1)

)
︸ ︷︷ ︸

Part 1

+ vrE
(
R2I(Ec1)

)︸ ︷︷ ︸
Part 2

(105)

Clearly, Part one is O(σ2
w). We next show that the difference between Part two and mmseapp(vr, 0) is O(σ2

w). To

this end, notice that R is correlated with Uσ , and it is convenient to decompose it as

R =

√
vr

1 + σ2
w

Uσ +

√
1− vr + σ2

w

1 + σ2
w

S,

where S ∼ N (0, 1) and S ‚ Uσ . Then,

Part 2 = vr E
(
R2I(Ec1)

)
= vr E

( √
vr

1 + σ2
w

Uσ +

√
1− vr + σ2

w

1 + σ2
w

S

)2

I(Ec1)


=

v2
r

1 + σ2
w

E
(
U2
σI(Ec1)

)
+
vr(1− vr + σ2

w)

1 + σ2
w

· P(Ec1)

We notice the following facts: (i) Uσ = Z + σwW ; (ii) Ec1 = I(Uσ ∈ {x : f−1(f(x)) is an interval}). It can be

shown that there exists a constant C <∞ such that the following hold for all vr ∈ (0, 1)

E
(
U2
σI(Ec1)

)
≤ E

(
U2
σI(Ec1)

)∣∣
σw=0

+ C · σ2
w,

P(Ec1) ≤ P(Ec1)|σw=0 + C · σ2
w,

as σ2
w → 0. We skip the details here. Combining the above arguments proves (104).

Finally, combining (103) and (104), we have

mmsez(vr, σ
2
w) = mmseapp(vr, σw = 0) + o(1)vr +O(σ2

w),
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as vr + σ2
w → 0. Notice that

mmseapp(vr, σw = 0) = E
(
vrZ −

√
vr(1− vr)N

)2

I(Ec1)

where without slight abuse of notation Ec1 = I(Z ∈ {x : f−1(f(x)) is an interval}) (namely, it is the previous

defined Ec1 at σw = 0). This term has the same behavior as mmsez(vr) for small vr. Here, the O(vr) term is

vr(1− vr) · E[N2I(Ec1)] = vr(1− vr) ·D(Z|Y ).

Hence, overall we have

mmsez(vr, σ
2
w) ≤ vr ·D(Z|Y ) + o(vr) + C · σ2

w,

as vr + σ2
w → 0.

B. Main Proof for Lemma 7

Let g(vr, σ
2
w) and P (vr, σ

2
w) be the noisy counterparts of g(vr) and P (vr), respectively:

g(vr, σ
2
w)

∆
= 1− δ

(
1− mmsez(vr, σ

2
w)

vr

)
, (106a)

P (vr, σ
2
w)

∆
= E

[
φ(vr, σ

2
w)

φ(vr, σ2
w) + Λ

]
− g(vr, σ

2
w), (106b)

where mmsez(vr, σ
2
w) and φ(vr, σ

2
w) are defined in (32) and (33), respectively.

The behaviors of g and P around vr = 0 are different under the noiseless and noisy settings. Specifically,

lim
vr→0

g(vr, σ
2
w) =

1− δ · d(Y ) < 0 if σ2
w = 0,

1 if σ2
w 6= 0,

which is from the definition of conditional MMSE dimension and the fact that the distribution PZ|Yσ (where

Yσ
∆
= f(Z + σwW )) is absolutely continuous when σ2

w 6= 0. Further, from Lemma 14,

0 < φ(0, σ2
w)

∆
= lim
vr→0

φ(vr, σ
2
w) <∞.

Hence,

lim
vr→0

P (vr, σ
2
w) =

δ · d(Y )− 1 > 0 if σ2
w = 0,

E
[

φ(0,σ2
w)

φ(0,σ2
w)+Λ

]
− 1 < 0 if σ2

w 6= 0,

Since g(0) < 0 (where g(vr) is a shorthand for g(vr, 0)), there exists a neighbor of vr = 0 for which g(vr) < 0.

Define

v�
∆
= inf{v ∈ [0, 1] : g(vr) = 0}. (107)

If g(vr) > 0 for all vr ∈ [0, 1], we set v� = 1. Note that P and g are continuous functions of σ2
w ≥ 0 whenever

vr 6= 0. Let ε ∈ (0, v�) be an arbitrary constant. By continuity, for sufficiently small σ2
w, we have

P (vr, σ
2
w) > 0, ∀vr ∈ (ε, 1), (108)

and

g(ε, σ2
w) < 0. (109)
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Since g(0, σ2
w) = 1, g(vr, σ

2
w) = 0 has at least one solution in vr ∈ (0, ε). Let v�ε (σ2

w) be the largest one, i.e.,

v�ε (σ2
w)

∆
= sup

{
v ∈ (0, ε) : g(vr, σ

2
w) = 0

}
. (110)

This definition ensures g(vr, σ
2
w) < 0, ∀vr ∈ (v�ε (σ2

w), ε) (see (109)). This further ensures P (vr, σ
2
w) > 0 for

vr ∈ (vε(σ
2
w), ε), since the first term in (106b) is positive. Together with (108), we have

P (vr, σ
2
w) > 0 ∀vr ∈ (v�ε (σ2

w), 1). (111)

Now, let us define

v?r (σ2
w) = sup

{
v ∈ [0, 1] : P (vr, σ

2
w) = 0

}
, (112)

which is the fixed point reached by the state evolution. As a consequence of (111) and (112), we have (for small

enough σ2
w)

v?r (σ2
w) ≤ v�ε (σ2

w).

By the monotonicity of φ(vr, σ
2
w) with respect to vr (see Lemma 14), we have the following for small σ2

w

φ(v?r (σ2
w), σ2

w) ≤ φ(v�ε (σ2
w), σ2

w)

(a)
= (δ − 1) · v�ε (σ2

w)

(b)

≤ (δ − 1) · C(δ, f) · σ2
w,

(113)

where step (a) follows from (106a) and the fact that v�ε (σ2
w) is a solution to g(vr, σ

2
w) = 0, and step (b) is due to

Lemma 22. Together with Lemma 14, we finally have

σ2
w ≤ φ(v?(σ2

w), σ2
w) ≤ (δ − 1) · C(δ, f) · σ2

w. (114)

Finally, for small σ2
w, the MSE is given by

MSE?Λ(σ2
w,Λ) = E

[
φ(v?r (σ2

w), σ2
w)

φ(v?r (σ2
w), σ2

w) + Λ

]
= φ

(
v?(σ2

w), σ2
w

)
·
(
E[Λ−1] + o(1)

)
.

From (114), we have

σ2
w ·
(
E[Λ−1] + o(1)

)
≤ MSE?Λ(σ2

w,Λ) ≤ (δ − 1) · C(δ, f) · σ2
w ·
(
E[Λ−1] + o(1)

)
.

This completes our proof of Lemma 7.
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